Two-step Runge-Kutta methods and hyperbolic partial differential equations

Author:
R. A. Renaut

Journal:
Math. Comp. **55** (1990), 563-579

MSC:
Primary 65M06; Secondary 65M12

MathSciNet review:
1035943

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this study is the design of efficient methods for the solution of an ordinary differential system of equations arising from the semidiscretization of a hyperbolic partial differential equation. Jameson recently introduced the use of one-step Runge-Kutta methods for the numerical solution of the Euler equations. Improvements in efficiency up to 80

**[1]**George D. Byrne and Robert J. Lambert,*Pseudo-Runge-Kutta methods involving two points*, J. Assoc. Comput. Mach.**13**(1966), 114–123. MR**0185823****[2]**E. Hairer and G. Wanner,*On the Butcher group and general multi-value methods*, Computing (Arch. Elektron. Rechnen)**13**(1974), no. 1, 1–15 (English, with German summary). MR**0403225****[3]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[4]**P. J. van der Houwen,*Construction of integration formulas for initial value problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. North-Holland Series in Applied Mathematics and Mechanics, Vol. 19. MR**0519726****[5]**A. Iserles and R. A. Williamson,*Stability and accuracy of semidiscretized finite difference methods*, IMA J. Numer. Anal.**4**(1984), no. 3, 289–307. MR**752607**, 10.1093/imanum/4.3.289**[6]**Z. Jackiewicz, R. Renaut, and A. Feldstein,*Two-step Runge-Kutta methods*(submitted).**[7]**A. Jameson,*Transonic aerofoil calculations using the Euler equations*, Numerical Methods for Aeronautical Fluid Dynamics (P. L. Roe, ed.), Academic Press, 1982.**[8]**Rolf Jeltsch and Olavi Nevanlinna,*Stability of semidiscretizations of hyperbolic problems*, SIAM J. Numer. Anal.**20**(1983), no. 6, 1210–1218. MR**723838**, 10.1137/0720091**[9]**Rolf Jeltsch and Olavi Nevanlinna,*Stability and accuracy of time discretizations for initial value problems*, Numer. Math.**40**(1982), no. 2, 245–296. MR**684186**, 10.1007/BF01400542**[10]**Ingemar P. E. Kinnmark and William G. Gray,*One step integration methods of third-fourth order accuracy with large hyperbolic stability limits*, Math. Comput. Simulation**26**(1984), no. 3, 181–188. MR**753752**, 10.1016/0378-4754(84)90056-9**[11]**J. Douglas Lawson,*An order five Runge-Kutta process with extended region of stability*, SIAM J. Numer. Anal.**3**(1966), 593–597. MR**0216760****[12]**John J. H. Miller,*On the location of zeros of certain classes of polynomials with applications to numerical analysis*, J. Inst. Math. Appl.**8**(1971), 397–406. MR**0300435****[13]**J. Pike and P. L. Roe,*Accelerated convergence of Jameson’s finite-volume Euler scheme using van der Houwen integrators*, Comput. & Fluids**13**(1985), no. 2, 223–236. MR**828092**, 10.1016/0045-7930(85)90027-1**[14]**R. A. Renaut-Williamson,*Numerical solution of hyperbolic partial differential equations*, Ph.D. thesis, Cambridge University, England, 1985.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M06,
65M12

Retrieve articles in all journals with MSC: 65M06, 65M12

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1990-1035943-3

Keywords:
Pseudo-Runge-Kutta methods,
stability,
hyperbolic partial differential equations,
method of lines

Article copyright:
© Copyright 1990
American Mathematical Society