Optimal-order nonnested multigrid methods for solving finite element equations. II. On nonquasiuniform meshes

Author:
Shangyou Zhang

Journal:
Math. Comp. **55** (1990), 439-450

MSC:
Primary 65N55; Secondary 65F10, 65N30

MathSciNet review:
1035947

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Nonnested multigrid methods are proved to be optimal-order solvers for finite element equations arising from elliptic problems in the presence of singularities caused by re-entrant corners and abrupt changes in the boundary conditions, where the multilevel grids are appropriately refined near singularities and are not necessarily nested. Therefore, optimal and realistic finer grids (compared with nested local refinements) could be used because of the freedom in generating nonnested multilevel grids.

**[1]**I. Babuška, R. B. Kellogg, and J. Pitkäranta,*Direct and inverse error estimates for finite elements with mesh refinements*, Numer. Math.**33**(1979), no. 4, 447–471. MR**553353**, 10.1007/BF01399326**[2]**Randolph E. Bank and Todd Dupont,*An optimal order process for solving finite element equations*, Math. Comp.**36**(1981), no. 153, 35–51. MR**595040**, 10.1090/S0025-5718-1981-0595040-2**[3]**James H. Bramble, Joseph E. Pasciak, and Jinchao Xu,*The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms*, Math. Comp.**56**(1991), no. 193, 1–34. MR**1052086**, 10.1090/S0025-5718-1991-1052086-4**[4]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[5]**Wolfgang Hackbusch,*Multigrid methods and applications*, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR**814495****[6]**-,*On the convergence of a multi-grid iteration applied to finite element equations*, Report 77-8, Universität zu Köln, July 1977.**[7]**Stephen F. McCormick (ed.),*Multigrid methods*, Frontiers in Applied Mathematics, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR**972752****[8]**R. A. Nicolaides,*On the 𝑙² convergence of an algorithm for solving finite element equations*, Math. Comp.**31**(1977), no. 140, 892–906. MR**0488722**, 10.1090/S0025-5718-1977-0488722-3**[9]**R. Scott and S. Zhang,*A nonnested multigrid method for three dimensional boundary value problems*:*An introduction to NMGTM code*, in preparation.**[10]**Harry Yserentant,*The convergence of multilevel methods for solving finite-element equations in the presence of singularities*, Math. Comp.**47**(1986), no. 176, 399–409. MR**856693**, 10.1090/S0025-5718-1986-0856693-9**[11]**S. Zhang,*Multi-level iterative techniques*, Ph.D. thesis, Pennsylvania State University, 1988.**[12]**Shangyou Zhang,*Optimal-order nonnested multigrid methods for solving finite element equations. I. On quasi-uniform meshes*, Math. Comp.**55**(1990), no. 191, 23–36. MR**1023054**, 10.1090/S0025-5718-1990-1023054-2**[13]**-,*Non-nested multigrid methods for problems with corner singularities and interface singularities*, in preparation.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N55,
65F10,
65N30

Retrieve articles in all journals with MSC: 65N55, 65F10, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1990-1035947-0

Article copyright:
© Copyright 1990
American Mathematical Society