Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error bounds for the method of good lattice points


Authors: Shaun Disney and Ian H. Sloan
Journal: Math. Comp. 56 (1991), 257-266
MSC: Primary 65D32
DOI: https://doi.org/10.1090/S0025-5718-1991-1052090-6
MathSciNet review: 1052090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New error bounds are obtained for the method of good lattice points for multidimensional quadrature, when m, the number of quadrature points, is prime. One of these bounds reduces the constant in Niederreiter's asymptotic error bound, if the dimension exceeds 2. Together they give very much smaller numerical bounds for all values of m.


References [Enhancements On Off] (What's this?)

  • [1] N. S. Bakhvalov, Approximate computations of multiple integrals, Vestnik Moskov. Univ. Ser. Mat. Mekh. Astr. Fiz. Him. 4 (1959), 3-18. (Russian) MR 0115275 (22:6077)
  • [2] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, University Press, Cambridge, 1934.
  • [3] E. Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140-151. MR 0143329 (26:888)
  • [4] N. M. Korobov, The approximate computation of multiple integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207-1210. (Russian) MR 0104086 (21:2848)
  • [5] J. N. Lyness, Some comments on quadrature rule construction criteria, Numerical Integration. III (H. Brass and G. Hämmerlin, eds.), ISNM 85, Birkhäuser, Basel, 1988, pp. 117-129. MR 1021529 (91b:65028)
  • [6] D. Maisonneuve, Recherche el utilisation des 'Bons Treillis'. Programmation et résultats numériques, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, 1972, pp. 121-201. MR 0343529 (49:8270)
  • [7] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041. MR 508447 (80d:65016)
  • [8] -, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978), 203-219. MR 517026 (80e:10039)
  • [9] -, Quasi-Monte Carlo methods for numerical integration, Numerical Integration. III (H. Brass and G. Hämmerlin, eds.), ISNM 85, Birkhäuser, Basel, 1988, pp. 157-171.
  • [10] E. T. Whittaker and G. N. Watson, A course on modern analysis, 4th ed., University Press, Cambridge, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32

Retrieve articles in all journals with MSC: 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1052090-6
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society