Convergence of a second-order scheme for semilinear hyperbolic equations in dimensions

Authors:
Robert Glassey and Jack Schaeffer

Journal:
Math. Comp. **56** (1991), 87-106

MSC:
Primary 65M12; Secondary 35L70

MathSciNet review:
1052095

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A second-order energy-preserving scheme is studied for the solution of the semilinear Cauchy Problem . Smooth data functions of compact support are prescribed at . On any time interval [0, *T*], second-order convergence (up to logarithmic corrections) to the exact solution is established in both the energy and uniform norms.

**[1]**J. Ginibre and G. Velo,*The global Cauchy problem for the nonlinear Klein-Gordon equation*, Math. Z.**189**(1985), no. 4, 487–505. MR**786279**, 10.1007/BF01168155**[2]**R. Glassey,*An elementary proof of time decay for solutions to semilinear wave equations in low space dimension*, Brown University LCDS Report #82-24, 1982.**[3]**Robert Glassey, Ernst Horst, Andrew Lenard, and Jack Schaeffer,*On the inverse of the discrete two-dimensional wave operator at CFL*, SIAM J. Math. Anal.**22**(1991), no. 6, 1763–1775. MR**1129410**, 10.1137/0522110**[4]**Robert Glassey and Hartmut Pecher,*Time decay for nonlinear wave equations in two space dimensions*, Manuscripta Math.**38**(1982), no. 3, 387–400. MR**667924**, 10.1007/BF01170934**[5]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[6]**Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968****[7]**Walter A. Strauss,*Nonlinear wave equations*, CBMS Regional Conference Series in Mathematics, vol. 73, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR**1032250****[8]**Walter Strauss and Luis Vazquez,*Numerical solution of a nonlinear Klein-Gordon equation*, J. Comput. Phys.**28**(1978), no. 2, 271–278. MR**0503140****[9]**L. Vasquez and G. Benyu,*A numerical scheme for nonlinear Klein-Gordon equations*, Chinese J. Appl. Sci.**1**(1983), 25-32.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M12,
35L70

Retrieve articles in all journals with MSC: 65M12, 35L70

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1052095-5

Article copyright:
© Copyright 1991
American Mathematical Society