Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finding isomorphisms between finite fields


Author: H. W. Lenstra
Journal: Math. Comp. 56 (1991), 329-347
MSC: Primary 11T30; Secondary 11Y16
DOI: https://doi.org/10.1090/S0025-5718-1991-1052099-2
MathSciNet review: 1052099
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that an isomorphism between two explicitly given finite fields of the same cardinality can be exhibited in deterministic polynomial time.


References [Enhancements On Off] (What's this?)

  • [1] L. M. Adleman and H. W. Lenstra, Jr., Finding irreducible polynomials over finite fields, Proc. 18th Annual ACM Sympos. on Theory of Computing (STOC), Berkeley, 1986, pp. 350-355.
  • [2] W. Borho, Große Primzahlen und befreundete Zahlen: Über den Lucas-Test und Thabit-Regeln, Mitt. Math. Ges. Hamburg 11 (1983), 232-256. MR 744530 (85f:11094)
  • [3] H. Cohen and H. W. Lenstra, Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), 297-330. MR 726006 (86g:11078)
  • [4] S. A. Evdokimov, Efficient factorization of polynomials over finite fields and generalized Riemann hypothesis, prepublication, 1986.
  • [5] D. E. Knuth, The art of computer programming, vol. 2, second ed., Addison-Wesley, Reading, Mass., 1981. MR 633878 (83i:68003)
  • [6] S. Lang, Algebra, second ed., Addison-Wesley, Reading, Mass., 1984. MR 0197234 (33:5416)
  • [7] A. K. Lenstra, Factorization of polynomials, Computational Methods in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Mathematical Centre Tracts 154/155, Mathematisch Centrum, Amsterdam, 1982. MR 700263 (85a:12002)
  • [8] A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), North-Holland (to appear).
  • [9] H. W. Lenstra, Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), 217-231. MR 866111 (88c:11076)
  • [10] E. H. Moore, A doubly-infinite system of simple groups, Bull. New York Math. Soc. 3 (1893), 73-78; Math. Papers read at the Congress of Mathematics (Chicago, 1893), Chicago, 1896, pp. 208-242. MR 1557275
  • [11] V. Shoup, New algorithms for finding irreducible polynomials over finite fields, Math. Comp. 54 (1990), 435-447. MR 993933 (90j:11135)
  • [12] B. L. van der Waerden, Algebra, vol. I, seventh ed., Springer-Verlag, Berlin, 1966.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11T30, 11Y16

Retrieve articles in all journals with MSC: 11T30, 11Y16


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1052099-2
Keywords: Finite field, algorithm
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society