Rosenbrock-type methods adapted to differential-algebraic systems

Author:
Claus Schneider

Journal:
Math. Comp. **56** (1991), 201-213

MSC:
Primary 65L05; Secondary 65L06

MathSciNet review:
1052102

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the numerical solution of differential-algebraic systems of index one given in Kronecker canonical form. The methods described here are derived from the Rosenbrock approach. Hence, they do not require the solution of nonlinear systems of equations but one evaluation of the Jacobian and one LU decomposition per step. By construction, the *s*-stage method coincides with a solver for nonlinear equations of order if the stepsize is set to zero. In this sense, the adaptation to differential-algebraic equations is performed. The special structure of the method leads to simplified order conditions and to an easy implementation. Some particular methods up to order 4 are given. Especially, an embedded 4-stage method of order 4 (3) is derived.

**[1]**P. Deuflhard, E. Hairer, and J. Zugck,*One-step and extrapolation methods for differential-algebraic systems*, Numer. Math.**51**(1987), no. 5, 501–516. MR**910861**, 10.1007/BF01400352**[2]**C. W. Gear and L. R. Petzold,*ODE methods for the solution of differential/algebraic systems*, SIAM J. Numer. Anal.**21**(1984), no. 4, 716–728. MR**749366**, 10.1137/0721048**[3]**E. Griepentrog,*Stability of differential-algebraic equations and implicit Runge-Kutta methods*, Numerical treatment of differential equations (Halle, 1985) Teubner-Texte Math., vol. 82, Teubner, Leipzig, 1986, pp. 31–37. MR**877350****[4]**Ernst Hairer, Christian Lubich, and Michel Roche,*The numerical solution of differential-algebraic systems by Runge-Kutta methods*, Lecture Notes in Mathematics, vol. 1409, Springer-Verlag, Berlin, 1989. MR**1027594****[5]**P. Kaps and G. Wanner,*A study of Rosenbrock-type methods of high order*, Numer. Math.**38**(1981/82), no. 2, 279–298. MR**638451**, 10.1007/BF01397096**[6]**W. Liniger,*Multistep and one-leg methods for implicit mixed differential algebraic systems*, IEEE Trans. Circuits and Systems**CAS-29**(1979), 755-762.**[7]**Per Lötstedt and Linda Petzold,*Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas*, Math. Comp.**46**(1986), no. 174, 491–516. MR**829621**, 10.1090/S0025-5718-1986-0829621-X**[8]**Roswitha März,*Multistep methods for initial value problems in implicit differential-algebraic equations*, Beiträge Numer. Math.**12**(1984), 107–123. MR**732158****[9]**Syvert P. Nørsett and Arne Wolfbrandt,*Order conditions for Rosenbrock type methods*, Numer. Math.**32**(1979), no. 1, 1–15. MR**525633**, 10.1007/BF01397646**[10]**Linda Petzold,*Differential/algebraic equations are not ODEs*, SIAM J. Sci. Statist. Comput.**3**(1982), no. 3, 367–384. MR**667834**, 10.1137/0903023**[11]**Linda Petzold and Per Lötstedt,*Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications*, SIAM J. Sci. Statist. Comput.**7**(1986), no. 3, 720–733. MR**848560**, 10.1137/0907049**[12]**P. Rentrop, M. Roche, and G. Steinebach,*The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations*, Numer. Math.**55**(1989), no. 5, 545–563. MR**998909**, 10.1007/BF01398915**[13]**Werner C. Rheinboldt,*Differential-algebraic systems as differential equations on manifolds*, Math. Comp.**43**(1984), no. 168, 473–482. MR**758195**, 10.1090/S0025-5718-1984-0758195-5**[14]**Michel Roche,*Rosenbrock methods for differential algebraic equations*, Numer. Math.**52**(1988), no. 1, 45–63. MR**918316**, 10.1007/BF01401021**[15]**H. H. Rosenbrock,*Some general implicit processes for the numerical solution of differential equations*, Comput. J.**5**(1962/1963), 329–330. MR**0155434****[16]**A. Wolfbrandt,*A study of Rosenbrock processes with respect to order conditions and stiff stability*, Thesis, Chalmers University of Technology, Göteborg, Sweden, 1977.**[17]**J. F. Traub,*Iterative methods for the solution of equations*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0169356**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
65L06

Retrieve articles in all journals with MSC: 65L05, 65L06

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1052102-X

Keywords:
Differential-algebraic equations,
Rosenbrock type methods,
implicitly given differential equations,
implicit function,
homolopy-methods

Article copyright:
© Copyright 1991
American Mathematical Society