Solving deficient polynomial systems with homotopies which keep the subschemes at infinity invariant

Authors:
T. Y. Li and Xiao Shen Wang

Journal:
Math. Comp. **56** (1991), 693-710

MSC:
Primary 65H10; Secondary 65H20

MathSciNet review:
1066835

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By a *deficient* polynomial system of *n* polynomial equations in *n* unknowns we mean a system that has fewer solutions than that predicted by the total degree, or the Bézout number, of the system. If the system is *m*-homogeneous, the Bézout number can be considerably reduced. In this paper, we introduce a homotopy for numerically determining all isolated solutions of deficient *m*-homogeneous systems. The initial polynomial system *Q* is chosen which keeps the *subschemes* of at infinity invariant when *t* varies in [0, 1).

**[1]**Eugene Allgower and Kurt Georg,*Simplicial and continuation methods for approximating fixed points and solutions to systems of equations*, SIAM Rev.**22**(1980), no. 1, 28–85. MR**554709**, 10.1137/1022003**[2]**V. Balakotaiah, D. Luss, and B. L. Keyfitz,*Steady state multiplicity analysis of lumpedparameter systems described by a set of algebraic equations*, Chem. Engrg. Comm.**36**(1985), 121-147.**[3]**Shui Nee Chow, John Mallet-Paret, and James A. Yorke,*A homotopy method for locating all zeros of a system of polynomials*, Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978) Lecture Notes in Math., vol. 730, Springer, Berlin, 1979, pp. 77–88. MR**547982****[4]**Moody T. Chu, T.-Y. Li, and Tim Sauer,*Homotopy method for general 𝜆-matrix problems*, SIAM J. Matrix Anal. Appl.**9**(1988), no. 4, 528–536. MR**964666**, 10.1137/0609043**[5]**Gerd Fischer,*Complex analytic geometry*, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR**0430286****[6]**William Fulton,*Intersection theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR**732620****[7]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[8]**W. V. D. Hodge and D. Pedoe,*Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties*, Cambridge, at the University Press, 1952. MR**0048065****[9]**Tien-Yien Li,*On Chow, Mallet-Paret and Yorke homotopy for solving system of polynomials*, Bull. Inst. Math. Acad. Sinica**11**(1983), no. 3, 433–437. MR**726989****[10]**Tien-Yien Li and Tim Sauer,*A simple homotopy for solving deficient polynomial systems*, Japan J. Appl. Math.**6**(1989), no. 3, 409–419. MR**1019683**, 10.1007/BF03167887**[11]**Tien-Yien Li, Tim Sauer, and James A. Yorke,*Numerical solution of a class of deficient polynomial systems*, SIAM J. Numer. Anal.**24**(1987), no. 2, 435–451. MR**881375**, 10.1137/0724032**[12]**T.-Y. Li, Tim Sauer, and James A. Yorke,*The random product homotopy and deficient polynomial systems*, Numer. Math.**51**(1987), no. 5, 481–500. MR**910860**, 10.1007/BF01400351**[13]**Hideyuki Matsumura,*Commutative algebra*, W. A. Benjamin, Inc., New York, 1970. MR**0266911****[14]**Alexander P. Morgan,*A homotopy for solving polynomial systems*, Appl. Math. Comput.**18**(1986), no. 1, 87–92. MR**815774**, 10.1016/0096-3003(86)90030-5**[15]**Alexander Morgan and Andrew Sommese,*A homotopy for solving general polynomial systems that respects 𝑚-homogeneous structures*, Appl. Math. Comput.**24**(1987), no. 2, 101–113. MR**914806**, 10.1016/0096-3003(87)90063-4**[16]**Alexander Morgan and Andrew Sommese,*Computing all solutions to polynomial systems using homotopy continuation*, Appl. Math. Comput.**24**(1987), no. 2, 115–138. MR**914807**, 10.1016/0096-3003(87)90064-6**[17]**Walter Zulehner,*A simple homotopy method for determining all isolated solutions to polynomial systems*, Math. Comp.**50**(1988), no. 181, 167–177. MR**917824**, 10.1090/S0025-5718-1988-0917824-7

Retrieve articles in *Mathematics of Computation*
with MSC:
65H10,
65H20

Retrieve articles in all journals with MSC: 65H10, 65H20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1066835-2

Article copyright:
© Copyright 1991
American Mathematical Society