Superconvergence and extrapolation for mixed finite element methods on rectangular domains

Author:
Jun Ping Wang

Journal:
Math. Comp. **56** (1991), 477-503

MSC:
Primary 65N30

MathSciNet review:
1068807

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Asymptotic expansions for the RT (Raviart-Thomas) mixed finite element approximation by the lowest-order rectangular element associated with a second-order elliptic equation on a rectangular domain are derived. Superconvergence for the vector field along the Gauss lines is obtained as a result of the expansion. A procedure of postprocessed extrapolation is presented for the scalar field, as well as procedures of pure Richardson extrapolation for both the vector and the scalar fields.

**[1]**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**0359352****[2]**H. Blum, Q. Lin, and R. Rannacher,*Asymptotic error expansion and Richardson extrapolation for linear finite elements*, Numer. Math.**49**(1986), no. 1, 11–37. MR**847015**, 10.1007/BF01389427**[3]**J. H. Bramble and J. Xu,*A local post-processing technique for improving the accuracy in mixed finite element approximations*, Cornell University, Math. Sci. Inst., Technical Report 88-1.**[4]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 129–151 (English, with loose French summary). MR**0365287****[5]**Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini,*Efficient rectangular mixed finite elements in two and three space variables*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 4, 581–604 (English, with French summary). MR**921828****[6]**Franco Brezzi, Jim Douglas Jr., and L. D. Marini,*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), no. 2, 217–235. MR**799685**, 10.1007/BF01389710**[7]**Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler,*An 𝐿^{∞} estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge**8**(1974), no. R-2, 61–66 (English, with Loose French summary). MR**0359358****[8]**Jim Douglas Jr. and Jean E. Roberts,*Global estimates for mixed methods for second order elliptic equations*, Math. Comp.**44**(1985), no. 169, 39–52. MR**771029**, 10.1090/S0025-5718-1985-0771029-9**[9]**J. Douglas Jr. and J. Wang,*Superconvergence of mixed finite element methods on rectangular domains*, Calcolo**26**(1989), no. 2-4, 121–133 (1990). MR**1083049**, 10.1007/BF02575724**[10]**R. Durán,*Error analysis in*, ,*for mixed finite element methods for linear and quasi-linear elliptic problems*, RAIRO Anal. Numér.**22**(1988), 371-387.**[11]**R. E. Ewing, R. D. Lazarov, and J. Wang,*Superconvergence of the velocity along the Gauss lines in mixed finite element methods*, SIAM J. Numer. Anal.**28**(1991), no. 4, 1015–1029. MR**1111451**, 10.1137/0728054**[12]**R. S. Falk and J. E. Osborn,*Error estimates for mixed methods*, RAIRO Anal. Numér.**14**(1980), no. 3, 249–277 (English, with French summary). MR**592753****[13]**Michel Fortin,*An analysis of the convergence of mixed finite element methods*, RAIRO Anal. Numér.**11**(1977), no. 4, 341–354, iii (English, with French summary). MR**0464543****[14]**P. Grisvard,*Elliptic problems in nonsmooth domains*, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**775683****[15]**Lin Qun and Tao Lü,*Asymptotic expansions for finite element approximation of elliptic problem on polygonal domains*, Computing methods in applied sciences and engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 317–321. MR**806787****[16]**Q. Lin, T. Lu, and S. Shen,*Maximum norm estimate, extrapolation and optimal point of stresses for the finite element methods on the strongly regular triangulation*, J. Comput. Math.**1**(1983), 376-383.**[17]**Qun Lin and Jun Ping Wang,*Some expansions of the finite element approximation*, Shuli Kexue [Mathematical Sciences. Research Reports IMS], vol. 15, Academia Sinica, Institute of Mathematical Sciences, Chengdu, 1984. MR**777686****[18]**Qun Lin and Jinchao Xu,*Linear finite elements with high accuracy*, J. Comput. Math.**3**(1985), no. 2, 115–133. MR**854355****[19]**Qun Lin and Qi Ding Zhu,*Asymptotic expansion for the derivative of finite elements*, J. Comput. Math.**2**(1984), no. 4, 361–363. MR**869509****[20]**G. I. Marchuk,*Methods of numerical mathematics*, 2nd ed., Applications of Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1982. Translated from the Russian by Arthur A. Brown. MR**661258****[21]**Mie Nakata, Alan Weiser, and Mary Fanett Wheeler,*Some superconvergence results for mixed finite element methods for elliptic problems on rectangular domains*, The mathematics of finite elements and applications, V (Uxbridge, 1984), Academic Press, London, 1985, pp. 367–389. MR**811048****[22]**P.-A. Raviart and J. M. Thomas,*A mixed finite element method for 2nd order elliptic problems*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606. MR**0483555****[23]**Jun Ping Wang,*Asymptotic expansions and 𝐿^{∞}-error estimates for mixed finite element methods for second order elliptic problems*, Numer. Math.**55**(1989), no. 4, 401–430. MR**997230**, 10.1007/BF01396046

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1068807-0

Keywords:
Second-order elliptic equation,
finite element method,
asymptotic expansion,
superconvergence,
Richardson extrapolation

Article copyright:
© Copyright 1991
American Mathematical Society