A Hamiltonian approximation to simulate solitary waves of the Korteweg-de Vries equation

Author:
Ming You Huang

Journal:
Math. Comp. **56** (1991), 607-620

MSC:
Primary 65M60; Secondary 35Q53, 76B15, 76B25

MathSciNet review:
1068815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given the Hamiltonian nature and conservation laws of the Korteweg-de Vries equation, the simulation of the solitary waves of this equation by numerical methods should be effected in such a way as to maintain the Hamiltonian nature of the problem. A semidiscrete finite element approximation of Petrov-Galerkin type, proposed by R. Winther, is analyzed here. It is shown that this approximation is a finite Hamiltonian system, and as a consequence, the energy integral

**[1]**V. I. Arnold,*Mathematical methods of classical mechanics*, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR**0690288****[2]**Douglas N. Arnold and Ragnar Winther,*A superconvergent finite element method for the Korteweg-de Vries equation*, Math. Comp.**38**(1982), no. 157, 23–36. MR**637284**, 10.1090/S0025-5718-1982-0637284-8**[3]**Jim Douglas Jr., Todd Dupont, and Mary F. Wheeler,*A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations*, Math. Comp.**32**(1978), no. 142, 345–362. MR**0495012**, 10.1090/S0025-5718-1978-0495012-2**[4]**Kang Feng,*On difference schemes and symplectic geometry*, Proceedings of the 1984 Beijing symposium on differential geometry and differential equations, Science Press, Beijing, 1985, pp. 42–58. MR**824486****[5]**Peter D. Lax,*Integrals of nonlinear equations of evolution and solitary waves*, Comm. Pure Appl. Math.**21**(1968), 467–490. MR**0235310****[6]**Vidar Thomée,*Negative norm estimates and superconvergence in Galerkin methods for parabolic problems*, Math. Comp.**34**(1980), no. 149, 93–113. MR**551292**, 10.1090/S0025-5718-1980-0551292-5**[7]**A. C. Vliegenthart,*On finite-difference methods for the Korteweg-de Vries equation*, J. Engrg. Math.**5**(1971), 137–155. MR**0363153****[8]**Lars B. Wahlbin,*A dissipative Galerkin method for the numerical solution of first order hyperbolic equations*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 147–169. Publication No. 33. MR**0658322****[9]**Ragnar Winther,*A conservative finite element method for the Korteweg-de Vries equation*, Math. Comp.**34**(1980), no. 149, 23–43. MR**551289**, 10.1090/S0025-5718-1980-0551289-5

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
35Q53,
76B15,
76B25

Retrieve articles in all journals with MSC: 65M60, 35Q53, 76B15, 76B25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1991-1068815-X

Keywords:
Korteweg-de Vries equation,
finite element method,
Hamiltonian approximation,
superconvergence

Article copyright:
© Copyright 1991
American Mathematical Society