Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A table of totally real quintic number fields


Author: F. Diaz y Diaz
Journal: Math. Comp. 56 (1991), 801-808, S1
MSC: Primary 11Y40; Secondary 11R21, 11R29, 11R32
DOI: https://doi.org/10.1090/S0025-5718-1991-1068820-3
MathSciNet review: 1068820
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a table of the 1077 totally real number fields of degree five having a discriminant less than 2 000 000. There are two nonisomorphic fields of discriminant 1 810 969 and two nonisomorphic fields of discriminant 1 891 377. All the other number fields in the table are characterized by their discriminant. Among these fields, three are cyclic and four have a Galois closure whose Galois group is the dihedral group $ {D_5}$. The Galois closure for all the other fields in the table has a Galois group isomorphic to $ {S_5}$.


References [Enhancements On Off] (What's this?)

  • [1] A.-M. Bergé, J. Martinet, and M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), 869-884. MR 1011438 (90k:11169)
  • [2] J. Buchmann and D. Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), 161-174. MR 946599 (89f:11147)
  • [3] P. Cartier and Y. Roy, On the enumeration of quintic fields with small discriminant, J. Reine Angew. Math. 268/269 (1974), 213-215. MR 0349626 (50:2119)
  • [4] H. Cohn, A numerical study of quintics of small discriminant, Comm. Pure Appl. Math. 8 (1955), 377-386. MR 0071117 (17:88a)
  • [5] J. Hunter, The minimum discriminant of quintic fields, Glasgow Math. Assoc. 3 (1957), 57-67. MR 0091309 (19:944b)
  • [6] S. H. Kwon and J. Martinet, Sur les corps résolubles de degré premier, J. Reine Angew. Math. 375/376 (1987), 12-23. MR 882288 (88g:11080)
  • [7] J. Liang and H. Zassenhauss, The minimum discriminant of sixth degree totally complex algebraic number fields, J. Number Theory 9 (1977), 16-35. MR 0427270 (55:305)
  • [8] J. Martinet, Méthodes géométriques dans la recherche des petits discriminants, Séminaire de Théorie des Nombres de Paris 1983/1984, Birkhäuser, Basel, 1985, pp. 147-179. MR 902831 (88h:11083)
  • [9] M. Pohst, On the computation of number fields of small discriminant including the minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), 99-117. MR 644904 (83g:12009)
  • [10] D. G. Rish, On algebraic number fields of degree five, Vestnik Moscov. Univ. Ser. I. Mat. Mekh. 37 (1982), 76-80. MR 655408 (83g:12006)
  • [11] K. Takeuchi, Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J. 2 (1984), 21-31. MR 769447 (86i:11060)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R21, 11R29, 11R32

Retrieve articles in all journals with MSC: 11Y40, 11R21, 11R29, 11R32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1068820-3
Keywords: Totally real number fields, discriminant, Galois group
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society