Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A precise calculation of the Feigenbaum constants

Author: Keith Briggs
Journal: Math. Comp. 57 (1991), 435-439
MSC: Primary 11Y60; Secondary 39B12, 58F14, 65Q05
MathSciNet review: 1079009
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Feigenbaum constants arise in the theory of iteration of real functions. We calculate here to high precision the constants $ \alpha $ and $ \delta $ associated with period-doubling bifurcations for maps with a single maximum of order z, for $ 2 \leq z \leq 12$. Multiple-precision floating-point techniques are used to find a solution of Feigenbaum's functional equation, and hence the constants.

References [Enhancements On Off] (What's this?)

  • [1] R. P. Brent, A Fortran multiple-precision arithmetic package, ACM Trans. Math. Software 4 (1978), 57-70.
  • [2] K. M. Briggs, Simple experiments in chaotic dynamics, Amer. J. Phys. 55 (1987), 1083-1089.
  • [3] -, How to calculate the Feigenbaum constants on your PC, Austral. Math. Soc. Gazette 16 (1989), 89-92. MR 1024906
  • [4] F. Christiansen, P. Cvitanović and H. H. Rugh, The spectrum of the period-doubling operator in terms of cycles, J. Phys. A 23 (1990), L713-L717. MR 1063006 (91d:58136)
  • [5] R. Delbourgo and B. G. Kenny, Universality relations, Phys. Rev. A 33 (1986), 3292-3302.
  • [6] J.-P. Eckmann and P. Wittwer, Computer methods and Borel summability applied to Feigenbaum's equation, Springer-Verlag, 1985. MR 788690 (86m:58129)
  • [7] H. Epstein, New proofs of the existence of the Feigenbaum functions, Report No. IHES/P/85/55, Inst. Hautes Études Sci., 1985. MR 859818 (88i:58124)
  • [8] M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys. 21 (1979), 669-706. MR 555919 (82e:58072)
  • [9] -, The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence, Ann. New York Acad. Sci. 357 (1980), 330-336.
  • [10] G. H. Golub and C. F. Van Loan, Matrix computations, 2nd ed., The Johns Hopkins Univ. Press, Baltimore, 1989. MR 1002570 (90d:65055)
  • [11] O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. 6 (1982), 427-434. MR 648529 (83g:58051)
  • [12] J. B. McGuire and C. J. Thompson, Asymptotic properties of sequences of iterates of nonlinear transformations, J. Statist. Phys. 27 (1982), 183-200. MR 656875 (84h:58123)
  • [13] A. Mo and P. C. Hemmer, Iterative properties of nonquadratic one-dimensional maps, Phys. Scripta 29 (1984), 296-302. MR 742275 (85e:58102)
  • [14] C. J. Thompson and J. B. McGuire, Asymptotic and essentially singular solutions of the Feigenbaum equation, J. Statist. Phys. 51 (1988), 991-1007. MR 971042 (90c:58134)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y60, 39B12, 58F14, 65Q05

Retrieve articles in all journals with MSC: 11Y60, 39B12, 58F14, 65Q05

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society