A precise calculation of the Feigenbaum constants

Author:
Keith Briggs

Journal:
Math. Comp. **57** (1991), 435-439

MSC:
Primary 11Y60; Secondary 39B12, 58F14, 65Q05

DOI:
https://doi.org/10.1090/S0025-5718-1991-1079009-6

MathSciNet review:
1079009

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Feigenbaum constants arise in the theory of iteration of real functions. We calculate here to high precision the constants and associated with period-doubling bifurcations for maps with a single maximum of order *z*, for . Multiple-precision floating-point techniques are used to find a solution of Feigenbaum's functional equation, and hence the constants.

**[1]**R. P. Brent,*A Fortran multiple-precision arithmetic package*, ACM Trans. Math. Software**4**(1978), 57-70.**[2]**K. M. Briggs,*Simple experiments in chaotic dynamics*, Amer. J. Phys.**55**(1987), 1083-1089.**[3]**-,*How to calculate the Feigenbaum constants on your PC*, Austral. Math. Soc. Gazette**16**(1989), 89-92. MR**1024906****[4]**F. Christiansen, P. Cvitanović and H. H. Rugh,*The spectrum of the period-doubling operator in terms of cycles*, J. Phys. A**23**(1990), L713-L717. MR**1063006 (91d:58136)****[5]**R. Delbourgo and B. G. Kenny,*Universality relations*, Phys. Rev. A**33**(1986), 3292-3302.**[6]**J.-P. Eckmann and P. Wittwer,*Computer methods and Borel summability applied to Feigenbaum's equation*, Springer-Verlag, 1985. MR**788690 (86m:58129)****[7]**H. Epstein,*New proofs of the existence of the Feigenbaum functions*, Report No. IHES/P/85/55, Inst. Hautes Études Sci., 1985. MR**859818 (88i:58124)****[8]**M. J. Feigenbaum,*The universal metric properties of nonlinear transformations*, J. Statist. Phys.**21**(1979), 669-706. MR**555919 (82e:58072)****[9]**-,*The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence*, Ann. New York Acad. Sci.**357**(1980), 330-336.**[10]**G. H. Golub and C. F. Van Loan,*Matrix computations*, 2nd ed., The Johns Hopkins Univ. Press, Baltimore, 1989. MR**1002570 (90d:65055)****[11]**O. E. Lanford III,*A computer-assisted proof of the Feigenbaum conjectures*, Bull. Amer. Math. Soc.**6**(1982), 427-434. MR**648529 (83g:58051)****[12]**J. B. McGuire and C. J. Thompson,*Asymptotic properties of sequences of iterates of nonlinear transformations*, J. Statist. Phys.**27**(1982), 183-200. MR**656875 (84h:58123)****[13]**A. Mo and P. C. Hemmer,*Iterative properties of nonquadratic one-dimensional maps*, Phys. Scripta**29**(1984), 296-302. MR**742275 (85e:58102)****[14]**C. J. Thompson and J. B. McGuire,*Asymptotic and essentially singular solutions of the Feigenbaum equation*, J. Statist. Phys.**51**(1988), 991-1007. MR**971042 (90c:58134)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y60,
39B12,
58F14,
65Q05

Retrieve articles in all journals with MSC: 11Y60, 39B12, 58F14, 65Q05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1079009-6

Article copyright:
© Copyright 1991
American Mathematical Society