Covering radius computations for binary cyclic codes

Authors:
Randall Dougherty and Heeralal Janwa

Journal:
Math. Comp. **57** (1991), 415-434

MSC:
Primary 94B75

MathSciNet review:
1079013

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the covering radius of each binary cyclic code of length (for both even and odd lengths) and redundancy . We also compute the covering radii of their punctured codes and shortened codes. Thus we give exact covering radii of over six thousand codes. For each of these codes (except for certain composite codes), we also determine the number of cosets of each weight less than or equal to the covering radius. These results are used to compute the minimum distances of the above cyclic codes. We use the covering radii of shortened codes and other criteria for normality to show that all but eight of the cyclic codes for which we determine the covering radius are normal. For all but seven of these normal codes, we determine the norm using some old results and some new results proved here. We observe that many cyclic codes are among the best covering codes discovered so far, and some of them lead to improvements on the previously published bounds on , the smallest covering radius of any binary linear [*n*, *k*] code.

Among some other applications of our results, we use our table of covering radii and a code augmentation argument to give four improvements on the values of , where is the largest minimum distance of any binary [*n*, *k*] code. These results show that the covering radius is intimately connected with the other three parameters of a linear code, *n*, *k*, and *d*. We also give a complete classification (up to isomorphism) of cyclic self-dual codes of lengths 42, 56, and 60.

The computations were carried out mainly on concurrent machines (hypercubes and Connection Machines); we give a description of our algorithm.

**[1]**Elwyn R. Berlekamp,*Algebraic coding theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968. MR**0238597****[2]**A. E. Brouwer, A. M. Cohen, and A. Neumaier,*Distance-regular graphs*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18, Springer-Verlag, Berlin, 1989. MR**1002568****[3]**Richard A. Brualdi and Vera S. Pless,*On the length of codes with a given covering radius*, Coding theory and design theory, Part I, IMA Vol. Math. Appl., vol. 20, Springer, New York, 1990, pp. 9–15. MR**1047868**, 10.1007/978-1-4613-8994-1_2**[4]**Richard A. Brualdi, Vera S. Pless, and Richard M. Wilson,*Short codes with a given covering radius*, IEEE Trans. Inform. Theory**35**(1989), no. 1, 99–109. MR**995328**, 10.1109/18.42181**[5]**A. R. Calderbank and J.-M. Goethals,*On a pair of dual subschemes of the Hamming scheme 𝐻_{𝑛}(𝑞)*, European J. Combin.**6**(1985), no. 2, 133–147. MR**810694**, 10.1016/S0195-6698(85)80004-4**[6]**R. Calderbank and W. M. Kantor,*The geometry of two-weight codes*, Bull. London Math. Soc.**18**(1986), no. 2, 97–122. MR**818812**, 10.1112/blms/18.2.97**[7]**A. R. Calderbank and N. J. A. Sloane,*Inequalities for covering codes*, IEEE Trans. Inform. Theory**34**(1988), no. 5, 1276–1280. Coding techniques and coding theory. MR**987672**, 10.1109/18.21257**[8]**Gérard D. Cohen, Mark G. Karpovsky, H. F. Mattson Jr., and James R. Schatz,*Covering radius—survey and recent results*, IEEE Trans. Inform. Theory**31**(1985), no. 3, 328–343. MR**794430**, 10.1109/TIT.1985.1057043**[9]**Gérard D. Cohen, Antoine-C. Lobstein, and N. J. A. Sloane,*Further results on the covering radius of codes*, IEEE Trans. Inform. Theory**32**(1986), no. 5, 680–694. MR**859092**, 10.1109/TIT.1986.1057227**[10]**Philippe Delsarte,*Four fundamental parameters of a code and their combinatorial significance*, Information and Control**23**(1973), 407–438. MR**0335135****[11]**S. M. Dodunekov,*Some quasi-perfect double error correcting codes*, Problemy Peredachi Informatsii**3**(1984), 17-23.**[12]**Diane E. Downie and N. J. A. Sloane,*The covering radius of cyclic codes of length up to 31*, IEEE Trans. Inform. Theory**31**(1985), no. 3, 446–447. MR**794445**, 10.1109/TIT.1985.1057033**[13]**V. D. Goppa,*Algebraico-geometry codes*, Math. USSR-Izv.**21**(1983), 75-91.**[14]**R. L. Graham and N. J. A. Sloane,*On the covering radius of codes*, IEEE Trans. Inform. Theory**31**(1985), no. 3, 385–401. MR**794436**, 10.1109/TIT.1985.1057039**[15]**J. W. P. Hirschfeld,*Linear codes and algebraic curves*, Geometrical combinatorics (Milton Keynes, 1984) Res. Notes in Math., vol. 114, Pitman, Boston, MA, 1984, pp. 35–53. MR**777155****[16]**Heeralal Janwa,*Some new upper bounds on the covering radius of binary linear codes*, IEEE Trans. Inform. Theory**35**(1989), no. 1, 110–122. MR**995329**, 10.1109/18.42182**[17]**H. Janwa and H. F. Mattson, Jr.,*The covering radius and normality of t-dense codes*, presented in part at the IEEE Internat. Sympos. on Inform. Theory, Ann Arbor, Michigan, October 1986 (to appear).**[18]**-,*On the normality of binary linear codes*, IEEE Trans. Inform. Theory (to appear).**[19]**Karen E. Kilby and N. J. A. Sloane,*On the covering radius problem for codes. I. Bounds on normalized covering radius*, SIAM J. Algebraic Discrete Methods**8**(1987), no. 4, 604–618. MR**918062**, 10.1137/0608049**[20]**F. J. MacWilliams and N. J. A. Sloane,*The theory of error-correcting codes*, North-Holland, Amsterdam, 1977.**[21]**H. F. Mattson Jr.,*Another upper bound on covering radius*, IEEE Trans. Inform. Theory**29**(1983), no. 3, 356–359. MR**712398**, 10.1109/TIT.1983.1056680**[22]**H. F. Mattson Jr.,*An improved upper bound on covering radius*, Applied algebra, algorithmics and error-correcting codes (Toulouse, 1984), Lecture Notes in Comput. Sci., vol. 228, Springer, Berlin, 1986, pp. 90–106. MR**888614**, 10.1007/3-540-16767-6_53**[23]**Aileen M. McLoughlin,*The complexity of computing the covering radius of a code*, IEEE Trans. Inform. Theory**30**(1984), no. 6, 800–804. MR**782215**, 10.1109/TIT.1984.1056978**[24]**W. Wesley Peterson and E. J. Weldon Jr.,*Error-correcting codes*, 2nd ed., The M.I.T. Press, Cambridge, Mass.-London, 1972. MR**0347444****[25]**V. Pless,*Introduction to the theory of error-correcting codes*, Wiley, New York, 1981.**[26]**N. J. A. Sloane,*A new approach to the covering radius of codes*, J. Combin. Theory Ser. A**42**(1986), no. 1, 61–86. MR**843463**, 10.1016/0097-3165(86)90007-5**[27]**N. J. A. Sloane and J. G. Thompson,*Cyclic self-dual codes*, IEEE Trans. Inform. Theory**29**(1983), no. 3, 364–366. MR**712400**, 10.1109/TIT.1983.1056682**[28]**J. H. van Lint,*Introduction to coding theory*, Springer-Verlag, New York, 1982.**[29]**Tom Verhoeff,*An updated table of minimum-distance bounds for binary linear codes*, IEEE Trans. Inform. Theory**33**(1987), no. 5, 665–680. MR**918189**, 10.1109/TIT.1987.1057356**[30]**V. A. Zinov′ev and S. N. Litsyn,*Shortening of codes*, Problemy Peredachi Informatsii**20**(1984), no. 1, 3–11 (Russian); English transl., Problems Inform. Transmission**20**(1984), no. 1, 1–7. MR**776762**

Retrieve articles in *Mathematics of Computation*
with MSC:
94B75

Retrieve articles in all journals with MSC: 94B75

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1079013-8

Article copyright:
© Copyright 1991
American Mathematical Society