Convergence estimates for product iterative methods with applications to domain decomposition
Authors:
James H. Bramble, Joseph E. Pasciak, Jun Ping Wang and Jinchao Xu
Journal:
Math. Comp. 57 (1991), 121
MSC:
Primary 65J10; Secondary 65M55, 65N22, 65N55
MathSciNet review:
1090464
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we consider iterative methods for the solution of symmetric positive definite problems on a space which are defined in terms of products of operators defined with respect to a number of subspaces. The simplest algorithm of this sort has an errorreducing operator which is the product of orthogonal projections onto the complement of the subspaces. New normreduction estimates for these iterative techniques will be presented in an abstract setting. Applications are given for overlapping Schwarz algorithms with many subregions for finite element approximation of secondorder elliptic problems.
 [1]
JeanPierre
Aubin, Approximation of elliptic boundaryvalue problems,
WileyInterscience [A division of John Wiley & Sons, Inc.], New
YorkLondonSydney, 1972. Pure and Applied Mathematics, Vol. XXVI. MR 0478662
(57 #18139)
 [2]
Ivo
Babuška and A.
K. Aziz, Survey lectures on the mathematical foundations of the
finite element method, The mathematical foundations of the finite
element method with applications to partial differential equations (Proc.
Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York,
1972, pp. 1–359. With the collaboration of G. Fix and R. B.
Kellogg. MR
0421106 (54 #9111)
 [3]
I. Babuška, On the Schwarz algorithm in the theory of differential equations of mathematical physics, Czechoslovak Math. J. 8 (1958), 328342 (Russian).
 [4]
Garrett
Birkhoff and Arthur
Schoenstadt (eds.), Elliptic problem solvers. II, Academic
Press, Inc., Orlando, FL, 1984. MR 764219
(85g:65007)
 [5]
James
H. Bramble and Joseph
E. Pasciak, New convergence estimates for
multigrid algorithms, Math. Comp.
49 (1987), no. 180, 311–329. MR 906174
(89b:65234), http://dx.doi.org/10.1090/S0025571819870906174X
 [6]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125
(87m:65174), http://dx.doi.org/10.1090/S00255718198608421253
 [7]
J.
H. Bramble, J.
E. Pasciak, and A.
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. II, Math. Comp. 49 (1987), no. 179, 1–16. MR 890250
(88j:65248), http://dx.doi.org/10.1090/S00255718198708902504
 [8]
James
H. Bramble, Joseph
E. Pasciak, and Alfred
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. III, Math. Comp. 51 (1988), no. 184, 415–430. MR 935071
(89e:65118), http://dx.doi.org/10.1090/S0025571819880935071X
 [9]
James
H. Bramble, Joseph
E. Pasciak, and Alfred
H. Schatz, The construction of preconditioners
for elliptic problems by substructuring. IV, Math. Comp. 53 (1989), no. 187, 1–24. MR 970699
(89m:65098), http://dx.doi.org/10.1090/S00255718198909706993
 [10]
J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Multigrid results which do not depend upon elliptic regularity assumptions (in preparation).
 [11]
James
H. Bramble, Joseph
E. Pasciak, and Jinchao
Xu, Parallel multilevel
preconditioners, Math. Comp.
55 (1990), no. 191, 1–22. MR 1023042
(90k:65170), http://dx.doi.org/10.1090/S00255718199010230426
 [12]
Philippe
G. Ciarlet, The finite element method for elliptic problems,
NorthHolland Publishing Co., AmsterdamNew YorkOxford, 1978. Studies in
Mathematics and its Applications, Vol. 4. MR 0520174
(58 #25001)
 [13]
M. Dryja and O. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report 339, Courant Institute of Mathematical Sciences, 1987.
 [14]
, Some domain decomposition algorithms for elliptic problems, Technical Report 438, Courant Institute of Mathematical Sciences, 1989.
 [15]
P.L.
Lions, On the Schwarz alternating method. I, First
International Symposium on Domain Decomposition Methods for Partial
Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988,
pp. 1–42. MR 972510
(90a:65248)
 [16]
Jan
Mandel and Steve
McCormick, Iterative solution of elliptic equations with
refinement: the twolevel case, Domain decomposition methods (Los
Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 81–92. MR 992005
(90h:65184)
 [17]
T. P. Mathew, Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems, Thesis, New York University, 1989.
 [18]
H. A. Schwarz, Ueber einige Abbildungsaufgaben, J. Reine Angew. Math. 70 (1869), 105120. [Ges. Math. Abh., vol.2, 6583].
 [19]
Olof
Widlund, Some domain decomposition and iterative refinement
algorithms for elliptic finite element problems, J. Comput. Math.
7 (1989), no. 2, 200–208. ChinaUS Seminar on
Boundary Integral and Boundary Element Methods in Physics and Engineering
(Xi’an, 1987–88). MR 1016840
(90m:65204)
 [20]
J. Xu, Theory of multilevel methods, Dept. Math. Rep. AM48, Penn. State University, 1989.
 [1]
 J. P. Aubin, Approximation of elliptic boundaryvalue problems, WileyInterscience, New York, 1972. MR 0478662 (57:18139)
 [2]
 A. K. Aziz and I. Babuška, Part I, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 1362. MR 0421106 (54:9111)
 [3]
 I. Babuška, On the Schwarz algorithm in the theory of differential equations of mathematical physics, Czechoslovak Math. J. 8 (1958), 328342 (Russian).
 [4]
 G. Birkhoff and A. Schoenstadt, Editors, Elliptic problem solvers, II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, Orlando, Florida, 1984. MR 764219 (85g:65007)
 [5]
 J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comp. 49 (1987), 311329. MR 906174 (89b:65234)
 [6]
 J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring, I, Math. Comp. 47 (1986), 103134. MR 842125 (87m:65174)
 [7]
 , The construction of preconditioners for elliptic problems by substructuring, II, Math. Comp. 49 (1987), 116. MR 890250 (88j:65248)
 [8]
 , The construction of preconditioners for elliptic problems by substructuring, III, Math. Comp. 51 (1988), 415430. MR 935071 (89e:65118)
 [9]
 , The construction of preconditioners for elliptic problems by substructuring, IV, Math. Comp. 53 (1989), 124. MR 970699 (89m:65098)
 [10]
 J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Multigrid results which do not depend upon elliptic regularity assumptions (in preparation).
 [11]
 J. H. Bramble, J. E. Pasciak and J. Xu, Parallel multilevel preconditioners, Math. Comp. 55 (1990), 122. MR 1023042 (90k:65170)
 [12]
 P. G. Ciarlet, The finite element method for elliptic problems, NorthHolland, New York, 1978. MR 0520174 (58:25001)
 [13]
 M. Dryja and O. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report 339, Courant Institute of Mathematical Sciences, 1987.
 [14]
 , Some domain decomposition algorithms for elliptic problems, Technical Report 438, Courant Institute of Mathematical Sciences, 1989.
 [15]
 P. L. Lions, On the Schwarz alternating method, Proc. First Internat. Sympos. on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, eds.), SIAM, Philadelphia, PA, 1988. MR 972510 (90a:65248)
 [16]
 J. Mandel and S. F. McCormick, Iterative solution of elliptic equations with refinement: The twolevel case, Domain Decomposition Methods (T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, eds.), SIAM, Philadelphia, PA, 1989, pp. 8192. MR 992005 (90h:65184)
 [17]
 T. P. Mathew, Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems, Thesis, New York University, 1989.
 [18]
 H. A. Schwarz, Ueber einige Abbildungsaufgaben, J. Reine Angew. Math. 70 (1869), 105120. [Ges. Math. Abh., vol.2, 6583].
 [19]
 O. Widlund, A comparison of some domain decomposition and iterative refinement algorithms for elliptic finite element problems, Technical Report BSC 88/15, IBM Bergen Scientific Centre, Bergen, Norway, 1988. MR 1016840 (90m:65204)
 [20]
 J. Xu, Theory of multilevel methods, Dept. Math. Rep. AM48, Penn. State University, 1989.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65J10,
65M55,
65N22,
65N55
Retrieve articles in all journals
with MSC:
65J10,
65M55,
65N22,
65N55
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199110904648
PII:
S 00255718(1991)10904648
Keywords:
Secondorder elliptic equation,
domain decomposition
Article copyright:
© Copyright 1991
American Mathematical Society
