Convergence estimates for product iterative methods with applications to domain decomposition

Authors:
James H. Bramble, Joseph E. Pasciak, Jun Ping Wang and Jinchao Xu

Journal:
Math. Comp. **57** (1991), 1-21

MSC:
Primary 65J10; Secondary 65M55, 65N22, 65N55

DOI:
https://doi.org/10.1090/S0025-5718-1991-1090464-8

MathSciNet review:
1090464

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider iterative methods for the solution of symmetric positive definite problems on a space which are defined in terms of products of operators defined with respect to a number of subspaces. The simplest algorithm of this sort has an error-reducing operator which is the product of orthogonal projections onto the complement of the subspaces. New norm-reduction estimates for these iterative techniques will be presented in an abstract setting. Applications are given for overlapping Schwarz algorithms with many subregions for finite element approximation of second-order elliptic problems.

**[1]**J. P. Aubin,*Approximation of elliptic boundary-value problems*, Wiley-Interscience, New York, 1972. MR**0478662 (57:18139)****[2]**A. K. Aziz and I. Babuška,*Part*I,*Survey lectures on the mathematical foundations of the finite element method*, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 1-362. MR**0421106 (54:9111)****[3]**I. Babuška,*On the Schwarz algorithm in the theory of differential equations of mathematical physics*, Czechoslovak Math. J.**8**(1958), 328-342 (Russian).**[4]**G. Birkhoff and A. Schoenstadt, Editors,*Elliptic problem solvers*, II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, Orlando, Florida, 1984. MR**764219 (85g:65007)****[5]**J. H. Bramble and J. E. Pasciak,*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), 311-329. MR**906174 (89b:65234)****[6]**J. H. Bramble, J. E. Pasciak, and A. H. Schatz,*The construction of preconditioners for elliptic problems by substructuring*, I, Math. Comp.**47**(1986), 103-134. MR**842125 (87m:65174)****[7]**-,*The construction of preconditioners for elliptic problems by substructuring*, II, Math. Comp.**49**(1987), 1-16. MR**890250 (88j:65248)****[8]**-,*The construction of preconditioners for elliptic problems by substructuring*, III, Math. Comp.**51**(1988), 415-430. MR**935071 (89e:65118)****[9]**-,*The construction of preconditioners for elliptic problems by substructuring*, IV, Math. Comp.**53**(1989), 1-24. MR**970699 (89m:65098)****[10]**J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu,*Multigrid results which do not depend upon elliptic regularity assumptions*(in preparation).**[11]**J. H. Bramble, J. E. Pasciak and J. Xu,*Parallel multilevel preconditioners*, Math. Comp.**55**(1990), 1-22. MR**1023042 (90k:65170)****[12]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland, New York, 1978. MR**0520174 (58:25001)****[13]**M. Dryja and O. Widlund,*An additive variant of the Schwarz alternating method for the case of many subregions*, Technical Report 339, Courant Institute of Mathematical Sciences, 1987.**[14]**-,*Some domain decomposition algorithms for elliptic problems*, Technical Report 438, Courant Institute of Mathematical Sciences, 1989.**[15]**P. L. Lions,*On the Schwarz alternating method*, Proc. First Internat. Sympos. on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, eds.), SIAM, Philadelphia, PA, 1988. MR**972510 (90a:65248)****[16]**J. Mandel and S. F. McCormick,*Iterative solution of elliptic equations with refinement*:*The two-level case*, Domain Decomposition Methods (T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund, eds.), SIAM, Philadelphia, PA, 1989, pp. 81-92. MR**992005 (90h:65184)****[17]**T. P. Mathew,*Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems*, Thesis, New York University, 1989.**[18]**H. A. Schwarz,*Ueber einige Abbildungsaufgaben*, J. Reine Angew. Math.**70**(1869), 105-120. [Ges. Math. Abh., vol.2, 65-83].**[19]**O. Widlund,*A comparison of some domain decomposition and iterative refinement algorithms for elliptic finite element problems*, Technical Report BSC 88/15, IBM Bergen Scientific Centre, Bergen, Norway, 1988. MR**1016840 (90m:65204)****[20]**J. Xu,*Theory of multilevel methods*, Dept. Math. Rep. AM-48, Penn. State University, 1989.

Retrieve articles in *Mathematics of Computation*
with MSC:
65J10,
65M55,
65N22,
65N55

Retrieve articles in all journals with MSC: 65J10, 65M55, 65N22, 65N55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1090464-8

Keywords:
Second-order elliptic equation,
domain decomposition

Article copyright:
© Copyright 1991
American Mathematical Society