MATHEMATICS OF COMPUTATION is published quarterly by the American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213. Second-class postage is paid at Providence, Rhode Island, and additional mailing offices. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.

Copyright © 1991, American Mathematical Society. All rights reserved.

Printed in the United States of America.

The paper used in this journal is acid-free and falls within the guidelines established to ensure permanence and durability.

This publication was typeset using AMS-TEX, the American Mathematical Society's TeX macro system.

10 9 8 7 6 5 4 3 2 1
Information for Contributors

Authors are encouraged to prepare articles electronically with the \texttt{AMSTeX} software package in the AMS pre-print style and to provide the article in this electronic form for typesetting. While this procedure may not reduce the interval between submission and publication of an article, generally much more accurate copy will be returned for proofreading. Production time for manuscripts prepared with other systems, even \TeX itself without \texttt{AMSTeX}, currently prevents cost-effective use of the existing electronic form. Before sending an \texttt{AMSTeX} manuscript for typesetting, contact the AMS Composition department for details.

Manuscripts prepared by some means other than \texttt{AMSTeX} should be doubled-spaced and produced in the format used by the journal. For journal abbreviations, see the latest Mathematical Reviews volume index. An author should submit the original and two copies of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in "A Manual for Authors of Mathematical Papers," which is available from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to Walter Gautschi, Chairman, Editorial Committee, Mathematics of Computation, Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The date received, which is published with the final version of an accepted paper, is the date received in the office of the Chairman of the Editorial Committee, and it is the responsibility of the author to submit manuscripts directly to this office.

Each article submitted for publication must be accompanied by a brief and reasonably self-contained abstract, and by 1991 Mathematics Subject Classification numbers. If a list of key words and phrases is included, it will be printed as a footnote on the first page. A list of the classification numbers may be found in the 1990 Subject Index to Mathematical Reviews. Authors are also encouraged to supply electronic addresses when available. These will be printed after the postal address at the end of each article.

Copying and Reprinting

Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The appearance of the code on the first page of an article in this journal indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.
The Mathematical Sciences Professional Directory is a handy reference to a wide variety of organizations of interest to the mathematical sciences community. Updated annually, the Directory lists the officers and committee members of over thirty organizations. In addition to AMS, MAA, and SIAM, there are also listings for such organizations as the American Statistical Association, the Institute of Mathematical Statistics, the Association for Computing Machinery, the National Council of Teachers of Mathematics, the National Academy of Sciences, and the American Association for the Advancement of Science. Addresses and telephone numbers are provided, and, in many cases, the names of key staff are given. The Directory also lists names, addresses, and telephone numbers of mathematical sciences personnel of federal funding agencies. Rounding out the Directory are listings for departments of mathematical sciences in colleges and universities across the U.S. and Canada (including the names of department chairs), listings for mathematical units of nonacademic organizations, and an alphabetical listing of colleges and universities.
Stories about
Maxima and Minima

V. M. Tikhomirov
translated by Abe Shenitzer

Throughout the history of mathematics, maximum and minimum problems have played an important role in the evolution of the field. Many beautiful and important problems have appeared in a variety of branches of mathematics and physics, as well as in other fields of sciences. The greatest scientists of the past—Euclid, Archimedes, Heron, the Bernoullis, Newton, and many others—took part in seeking solutions to these concrete problems. The solutions stimulated the development of the theory, and, as a result, techniques were elaborated that made possible the solution of a tremendous variety of problems by a single method.

This book, copublished with the Mathematical Association of America (MAA), presents fifteen "stories" designed to acquaint readers with the central concepts of the theory of maxima and minima, as well as with its illustrious history. Unlike most AMS publications, the book is accessible to high school students and would likely be of interest to a wide variety of readers.

In Part One, the author familiarizes readers with many concrete problems that lead to discussion of the work of some of the greatest mathematicians of all time. Part Two introduces a method for solving maximum and minimum problems that originated with Lagrange. While the content of this method has varied constantly, its basic conception has endured for over two centuries. The final story is addressed primarily to those who teach mathematics, for it impinges on the question of how and why to teach. Throughout the book, the author strives to show how the analysis of diverse facts gives rise to a general idea, how this idea is transformed, how it is enriched by new content, and how it remains the same in spite of these changes.

1980 Mathematics Subject Classifications: 00, 01, 46, 49
ISBN 0-8218-0165-1, LC 90-21246
187 pages (softcover), March 1991
Individual Member $18, List Price $23,
To order please specify MAWRLD/MC

All prices subject to change. Free shipment by surface; for air delivery, please add $6.50 per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.
David C. Hung, Even positive definite unimodular quadratic forms over $\mathbb{Q}(\sqrt{3})$.. 351
Holger W. Gollan, The 5-modular representations of the Tits simple group in the principal block .. 369
D. S. Dummit, Solving solvable quintics ... 387
James A. Maiorana, A classification of the cosets of the Reed-Muller code $R(1,6)$... 403
Randall Dougherty and Heeralal Janwa, Covering radius computations for binary cyclic codes .. 415
Keith Briggs, A precise calculation of the Feigenbaum constants 435
Reviews and Descriptions of Tables and Books 441
Supplement to “An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates” by R. H. Nochetto, M. Paolini, and C. Verdi S1
Microfiche Supplement
Randall Dougherty and Heeralal Janwa, Covering radius computations for binary cyclic codes
MATHEMATICS OF COMPUTATION

TABLE OF CONTENTS

JULY 1991

James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu, Convergence estimates for product iterative methods with applications to domain decomposition ... 1
James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu, Convergence estimates for multigrid algorithms without regularity assumptions ... 23
Eugene O'Riordan and Martin Stynes, A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions .. 47
Clint N. Dawson, Qiang Du, and Todd F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation 63
J. de Frutos, T. Ortega, and J. M. Sanz-Serna, Pseudospectral method for the “good” Boussinesq equation ... 109
M. D. Gunzburger, L. Hou, and T. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls 123
Dietmar Kröner, Absorbing boundary conditions for the linearized Euler equations in 2-D ... 153
Frédéric Coquel and Philippe Le Floch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach ... 169
H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss matrix theorem ... 211
H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems ... 221
B. Garcia-Archilla and J. M. Sanz-Serna, A finite difference formula for the discretization of d^3/dx^3 on nonuniform grids ... 239
Jim Lawrence, Polytope volume computation ... 259
L. Reichel, G. S. Ammar, and W. B. Gragg, Discrete least squares approximation by trigonometric polynomials ... 273
J. C. Fiorot and J. Tabka, Shape-preserving C^2 cubic polynomial interpolating splines ... 291
Peter Alfeld and Maritza Sirvent, The structure of multivariate superspline spaces of high degree ... 299
Walter Gautschi, A class of slowly convergent series and their summation by Gaussian quadrature ... 309
Walter Gautschi, On certain slowly convergent series occurring in plate contact problems ... 325
David R. Hayes, On the reduction of rank-one Drinfeld modules 339

(Continued on inside back cover)