On the continuity in of the -projection into finite element spaces

Author:
Bernardo Cockburn

Journal:
Math. Comp. **57** (1991), 551-561

MSC:
Primary 65N30; Secondary 46E99, 47B38, 65M60

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094943-9

MathSciNet review:
1094943

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show how to obtain continuity in the -seminorm of the -projection of into a large class of finite element spaces.

**[1]**F. Brezzi, J. Douglas, Jr., and L. D. Marini,*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), 217-235. MR**799685 (87g:65133)****[2]**F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin,*Mixed finite elements for second order elliptic problems in three variables*, Numer. Math.**51**(1987), 237-250. MR**890035 (88f:65190)****[3]**P. Ciarlet,*The finite element method for elliptic problems*, North-Holland, Amsterdam, 1975. MR**0520174 (58:25001)****[4]**B. Cockburn,*The quasimonotone schemes for scalar conservation laws. Part I*, SIAM J. Numer. Anal.**26**(1990), 1325-1341. MR**1025091 (91b:65106)****[5]**B. Cockburn, F. Coquel, and P. LeFloch,*An error estimate for finite volume methods for conservation laws in several space dimensions*(in preparation).**[6]**M. Crandall and A. Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), 1-21. MR**551288 (81b:65079)****[7]**M. Crouzeix and V. Thomée,*The stability in**and**of the*-*projection onto finite element function spaces*, Math. Comp.**48**(1987), 521-532. MR**878688 (88f:41016)****[8]**J. Descloux,*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260-265. MR**0309292 (46:8402)****[9]**J. Douglas, Jr., T. Dupont, and L. Wahlbin,*Optimal**error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475-483. MR**0371077 (51:7298)****[10]**J. Douglas, Jr., T. Dupont, and L. Wahlbin,*The stability in**of the*-*projection into finite element function spaces*, Numer. Math.**23**(1975), 193-197. MR**0383789 (52:4669)****[11]**T. Dupont and R. Scott,*Approximation by polynomials in Sobolev spaces*, Math. Comp.**34**(1980), 441-463. MR**559195 (81h:65014)****[12]**V. Girault and P. A. Raviart,*Finite element methods for Navier Stokes equations*, Springer Verlag Series SCM, vol. 5, 1986. MR**851383 (88b:65129)****[13]**E. Giusti,*Minimal surfaces and functions of bounded variation*, Birkhäuser, 1984. MR**775682 (87a:58041)****[14]**N. N. Kuznetzov,*Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation*, USSR Comput. Math. and Math. Phys.**16**(1976), 105-119.**[15]**J.C. Nédélec,*A new family of mixed finite elements in*, Numer. Math.**50**(1986), 57-81. MR**864305 (88e:65145)****[16]**R. Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), 91-106. MR**679435 (84a:65075)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
46E99,
47B38,
65M60

Retrieve articles in all journals with MSC: 65N30, 46E99, 47B38, 65M60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094943-9

Keywords:
-projection,
bounded variation,
finite elements

Article copyright:
© Copyright 1991
American Mathematical Society