On the continuity in of the -projection into finite element spaces

Author:
Bernardo Cockburn

Journal:
Math. Comp. **57** (1991), 551-561

MSC:
Primary 65N30; Secondary 46E99, 47B38, 65M60

MathSciNet review:
1094943

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show how to obtain continuity in the -seminorm of the -projection of into a large class of finite element spaces.

**[1]**Franco Brezzi, Jim Douglas Jr., and L. D. Marini,*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), no. 2, 217–235. MR**799685**, 10.1007/BF01389710**[2]**Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin,*Mixed finite elements for second order elliptic problems in three variables*, Numer. Math.**51**(1987), no. 2, 237–250. MR**890035**, 10.1007/BF01396752**[3]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[4]**Bernardo Cockburn,*Quasimonotone schemes for scalar conservation laws. I*, SIAM J. Numer. Anal.**26**(1989), no. 6, 1325–1341. MR**1025091**, 10.1137/0726077**[5]**B. Cockburn, F. Coquel, and P. LeFloch,*An error estimate for finite volume methods for conservation laws in several space dimensions*(in preparation).**[6]**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, 10.1090/S0025-5718-1980-0551288-3**[7]**M. Crouzeix and V. Thomée,*The stability in 𝐿_{𝑝} and 𝑊¹_{𝑝} of the 𝐿₂-projection onto finite element function spaces*, Math. Comp.**48**(1987), no. 178, 521–532. MR**878688**, 10.1090/S0025-5718-1987-0878688-2**[8]**Jean Descloux,*On finite element matrices*, SIAM J. Numer. Anal.**9**(1972), 260–265. MR**0309292****[9]**Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,*Optimal 𝐿_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**0371077**, 10.1090/S0025-5718-1975-0371077-0**[10]**Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,*The stability in 𝐿^{𝑞} of the 𝐿²-projection into finite element function spaces*, Numer. Math.**23**(1974/75), 193–197. MR**0383789****[11]**Todd Dupont and Ridgway Scott,*Polynomial approximation of functions in Sobolev spaces*, Math. Comp.**34**(1980), no. 150, 441–463. MR**559195**, 10.1090/S0025-5718-1980-0559195-7**[12]**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****[13]**Enrico Giusti,*Minimal surfaces and functions of bounded variation*, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR**775682****[14]**N. N. Kuznetzov,*Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation*, USSR Comput. Math. and Math. Phys.**16**(1976), 105-119.**[15]**J.-C. Nédélec,*A new family of mixed finite elements in 𝑅³*, Numer. Math.**50**(1986), no. 1, 57–81. MR**864305**, 10.1007/BF01389668**[16]**Richard Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), no. 161, 91–106. MR**679435**, 10.1090/S0025-5718-1983-0679435-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
46E99,
47B38,
65M60

Retrieve articles in all journals with MSC: 65N30, 46E99, 47B38, 65M60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094943-9

Keywords:
-projection,
bounded variation,
finite elements

Article copyright:
© Copyright 1991
American Mathematical Society