Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A tabulation of oriented links


Authors: Helmut Doll and Jim Hoste
Journal: Math. Comp. 57 (1991), 747-761
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0025-5718-1991-1094946-4
MathSciNet review: 1094946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we enumerate all prime, nonsplit, oriented, classical links having two or more components and nine or fewer crossings. Our list is complete up to diffeomorphism of $ {S^3}$ and complete reorientation of the link. (That is, reorienting every component of the link.) Previously, only tables of nonoriented links have been compiled. Furthermore, we list, in the case of alternating links, all possible minimal diagrams of each link up to orientation. We also include the skein polynomials of each link.

Our methods are direct generalizations of those used by Dowker and Thistlethwaite to enumerate knots. We rely heavily on the HOMFLY and Kauffman polynomials to distinguish inequivalent links. In a few cases these invariants will not suffice and other link invariants are employed. Our table is generated "from scratch" rather than by introducing orientations into already existing nonoriented tables. This provides a check on Conway's table in the range mentioned above.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. 28 (1926-27), 562-586. MR 1502807
  • [2] F. Bonahon and L. Siebenmann, Geometric splittings of classical knots and the algebraic knots of Conway, preprint.
  • [3] A. Caudron, Classification des noeuds et des enlacements, Prépublications Univ. Paris-Sud, Orsay, 1981. MR 679310 (84f:57001)
  • [4] J. H. Conway, An enumeration of knots and links and some of their related properties, Computational Problems in Abstract Algebra (John Leech, ed.), Pergamon Press, Oxford and New York, 1969, pp. 329-358. MR 0258014 (41:2661)
  • [5] C. H. Dowker and M. B. Thistlethwaite, Classification of knot projections, Topology Appl. 16 (1983), 19-31. MR 702617 (85e:57003)
  • [6] L. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1987), 395-407. MR 935433 (89d:57005)
  • [7] -, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [8] T. P. Kirkman, The 364 unifilar knots of ten crossings enumerated and defined, Trans. Roy. Soc. Edinburgh 32 (1885), 483-506.
  • [9] -, The enumeration, description and construction of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh 32 (1885), 281-309.
  • [10] W. B. R. Lickorish and K. Millett, The new polynomial invariants of knots and links, Math. Mag. 61 (1988), 3-23. MR 934822 (89d:57006)
  • [11] C. N. Little, On knots with a census for order ten, Trans. Connecticut Acad. 7 (1885), 27-43.
  • [12] -, Alternate $ \pm $ knots of order 11, Trans. Roy. Soc. Edinburgh 36 (1890), 253-255.
  • [13] -, Nonalternate $ \pm $ knots, Trans. Roy. Soc. Edinburgh 39 (1900), 771-778.
  • [14] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [15] K. A. Perko, Jr., On the classification of knots, Proc. Amer. Math. Soc. 45 (1974), 262-266. MR 0353294 (50:5778)
  • [16] -, On 10-crossing knots, Portugal. Math. 38 (1979), 5-9. MR 682350 (84e:57011)
  • [17] K. Reidemeister, Knotentheorie, Ergeb. Math. Grenzgeb., Bd. 1, Springer-Verlag, Berlin, 1932.
  • [18] D. Rolfsen, Knots and links, Publish or Perish, 1976. MR 0515288 (58:24236)
  • [19] P. G. Tait, On knots. I, II, III, Scientific Papers, Vol. I, Cambridge Univ. Press, London, 1898, pp. 273-347.
  • [20] M. B. Thistlethwaite, Knot tabulation and related topics, Aspects of Topology (I. M. James and E. H. Kronheimer, eds.), London Math. Soc. Lecture Notes Ser., vol. 93, Cambridge Univ. Press, 1985, pp. 1-76. MR 787823 (86j:57004)
  • [21] -, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309. MR 899051 (88h:57007)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1094946-4
Keywords: Knot, link
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society