Numerical approximations of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications

Authors:
I. Lasiecka and R. Triggiani

Journal:
Math. Comp. **57** (1991), 639-662, S13

MSC:
Primary 47N70; Secondary 47D06, 65J10, 65L99, 93C25

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094953-1

MathSciNet review:
1094953

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides a numerical approximation theory of algebraic Riccati operator equations with unbounded coefficient operators *A* and *B*, such as arise in the study of optimal quadratic cost problems over the time interval for the abstract dynamics . Here, *A* is the generator of a strongly continuous analytic semigroup, and *B* is an unbounded operator with any degree of unboundedness less than that of *A*. Convergence results are provided for the Riccati operators, as well as for all the other relevant quantities which enter into the dynamic optimization problem. The present numerical theory is the counterpart of a known continuous theory. Several examples of partial differential equations with boundary/point control, where all the required assumptions are verified, illustrate the theory. They include parabolic equations with -Dirichlet control, as well as plate equations with a strong degree of damping and point control.

**[1]**H. T. Banks and K. Kunisch,*The linear regulator problem for parabolic systems*, SIAM J. Control Optim.**22**(1984), no. 5, 684–698. MR**755137**, https://doi.org/10.1137/0322043**[2]**A. K. Aziz (ed.),*The mathematical foundations of the finite element method with applications to partial differential equations*, Academic Press, New York-London, 1972. MR**0347104****[3]**J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**0448926**, https://doi.org/10.1137/0714015**[4]**Shu Ping Chen and Roberto Triggiani,*Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems*, Approximation and optimization (Havana, 1987) Lecture Notes in Math., vol. 1354, Springer, Berlin, 1988, pp. 234–256. MR**996678**, https://doi.org/10.1007/BFb0089601**[5]**Shu Ping Chen and Roberto Triggiani,*Proof of extensions of two conjectures on structural damping for elastic systems*, Pacific J. Math.**136**(1989), no. 1, 15–55. MR**971932****[6]**Shu Ping Chen and Roberto Triggiani,*Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0<𝛼<\frac12*, Proc. Amer. Math. Soc.**110**(1990), no. 2, 401–415. MR**1021208**, https://doi.org/10.1090/S0002-9939-1990-1021208-4**[7]**Shu Ping Chen and Roberto Triggiani,*Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications*, J. Differential Equations**88**(1990), no. 2, 279–293. MR**1081250**, https://doi.org/10.1016/0022-0396(90)90100-4**[8]**G. Da Prato and A. Ichikawa,*Riccati equations with unbounded coefficients*, Ann. Mat. Pura Appl. (4)**140**(1985), 209–221. MR**807638**, https://doi.org/10.1007/BF01776850**[9]**Franco Flandoli,*Algebraic Riccati equation arising in boundary control problems*, SIAM J. Control Optim.**25**(1987), no. 3, 612–636. MR**885189**, https://doi.org/10.1137/0325035**[10]**Franco Flandoli,*Riccati equation arising in a boundary control problem with distributed parameters*, SIAM J. Control Optim.**22**(1984), no. 1, 76–86. MR**728673**, https://doi.org/10.1137/0322006**[11]**J. S. Gibson,*The Riccati integral equations for optimal control problems on Hilbert spaces*, SIAM J. Control Optim.**17**(1979), no. 4, 537–565. MR**534423**, https://doi.org/10.1137/0317039**[12]**J. Gardiner and A. Laub,*Matrix sign function implementations on a hypercube multiprocessor*, Proc. CDC Conf., December 1988, pp. 1466-1471.**[13]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[14]**Irena Lasiecka,*Convergence estimates for semidiscrete approximations of nonselfadjoint parabolic equations*, SIAM J. Numer. Anal.**21**(1984), no. 5, 894–909. MR**760624**, https://doi.org/10.1137/0721058**[15]**I. Lasiecka,*Galerkin approximations of abstract parabolic boundary value problems with rough boundary data—𝐿_{𝑝} theory*, Math. Comp.**47**(1986), no. 175, 55–75. MR**842123**, https://doi.org/10.1090/S0025-5718-1986-0842123-X**[16]**John E. Lagnese,*Boundary stabilization of thin plates*, SIAM Studies in Applied Mathematics, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. MR**1061153****[17]**I. Lasiecka and R. Triggiani,*The regulator problem for parabolic equations with Dirichlet boundary control. I. Riccati’s feedback synthesis and regularity of optimal solution*, Appl. Math. Optim.**16**(1987), no. 2, 147–168. MR**894809**, https://doi.org/10.1007/BF01442189**[18]**I. Lasiecka and R. Triggiani,*The regulator problem for parabolic equations with Dirichlet boundary control. II. Galerkin approximation*, Appl. Math. Optim.**16**(1987), no. 3, 187–216. MR**901813**, https://doi.org/10.1007/BF01442191**[19]**-,*Algebraic Riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory*, Perspectives in Control Theory (B. Jakubczyk, K. Malanowski, and W. Respondek, eds.), Birkhäuser, 1990, pp. 175-235; Expanded version to appear as a volume in Springer Verlag Lecture Notes in Control and Information Sciences.**[20]**I. Lasiecka and R. Triggiani,*Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati’s feedback synthesis*, SIAM J. Control Optim.**21**(1983), no. 1, 41–67. MR**688439**, https://doi.org/10.1137/0321003**[21]**A. Manitius and R. Triggiani,*Function space controllability of linear retarded systems: a derivation from abstract operator conditions*, SIAM J. Control Optim.**16**(1978), no. 4, 599–645. MR**0482505**, https://doi.org/10.1137/0316041**[22]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****[23]**Cora Sadosky,*Interpolation of operators and singular integrals*, Monographs and Textbooks in Pure and Applied Math., vol. 53, Marcel Dekker, Inc., New York, 1979. An introduction to harmonic analysis. MR**551747****[24]**V. Thomée,*Galerkin finite element methods for parabolic problems*, Lecture Notes in Math., vol. 1054, Springer, Berlin, 1984.**[25]**Roberto Triggiani,*On the stabilizability problem in Banach space*, J. Math. Anal. Appl.**52**(1975), no. 3, 383–403. MR**0445388**, https://doi.org/10.1016/0022-247X(75)90067-0**[26]**-,*Regularity of structurally damped systems with point/boundary control*, preprint 1989; J. Math. Anal. Appl. (to appear).**[27]**Roberto Triggiani,*Boundary feedback stabilizability of parabolic equations*, Appl. Math. Optim.**6**(1980), no. 3, 201–220. MR**576260**, https://doi.org/10.1007/BF01442895**[28]**Hans Triebel,*Interpolation theory, function spaces, differential operators*, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**503903**

Retrieve articles in *Mathematics of Computation*
with MSC:
47N70,
47D06,
65J10,
65L99,
93C25

Retrieve articles in all journals with MSC: 47N70, 47D06, 65J10, 65L99, 93C25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094953-1

Article copyright:
© Copyright 1991
American Mathematical Society