Variational formulation of a model free-boundary problem

Authors:
Patricia Saavedra and L. Ridgway Scott

Journal:
Math. Comp. **57** (1991), 451-475

MSC:
Primary 35R35; Secondary 35J20, 65N30, 76M30

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094958-0

MathSciNet review:
1094958

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this work is to present an error analysis of the numerical approximation by a finite element method of a free-surface problem. The analysis has been done in an abstract model which has many of the features of a free-surface problem for a viscous liquid. We study in this paper how the numerical approximation of the free boundary affects the approximation of the other variables of the problem and vice versa.

**[1]**G. Albinus,*coercivity in plane domains with piecewise smooth boundary*, Math. Nachr.**118**(1984), 317-336. MR**773628 (87f:35078)****[2]**G. Allain,*Small-time existence for the Navier-Stokes equations with a free surface*, Appl. Math. Optim.**16**(1987), 37-50. MR**883473 (88e:35147)****[3]**D. N. Arnold, L. R. Scott, and M. Vogelius,*Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**15**(1988), 169-192. MR**1007396 (91i:35043)****[4]**J. T. Beale,*Large-time regularity of viscous surface waves*, Arch. Rational Mech. Anal.**84**(1984), 307-352. MR**721189 (85c:35074)****[5]**J. Bemelmans,*Nonstationary viscous fluid flow generated by surface tension*I:*Existence of classical solution*, Univ. Bonn SFB Preprint no. 509, 1982.**[6]**Joran Bergh and Jorgen Löfstrom,*Interpolation spaces, an introduction*, Springer-Verlag, Berlin, 1976. MR**0482275 (58:2349)****[7]**H. Brezis,*Analyse fonctionnelle*, Masson Editeur, 1983. MR**697382 (85a:46001)****[8]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[9]**P. Clement,*Approximation by finite element functions using local regularization*, R.A.I.R.O. Anal. Numér. Ser. Rouge**9**(1975), 77-84. MR**0400739 (53:4569)****[10]**C. Cuvelier,*On the numerical solution of a capillary free boundary problem governed by the Navier-Stokes equations*, Lecture Notes in Phys., vol. 141, Springer-Verlag, Berlin and New York, 1980, pp. 132-137. MR**625686 (82j:76034)****[11]**J. Douglas, Jr., T. Dupont, and L. Wahlbin,*Optimal**error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475-483. MR**0371077 (51:7298)****[12]**R. Durán, R. H. Nochetto, and J. Wang,*Sharp maximum norm error estimates for finite element approximations of the Stokes problem in*2-*D*, Math. Comp.**51**(1988), 491-506. MR**935076 (89b:65261)****[13]**P. Grisvard,*Elliptic problems in nonsmooth domains*, Pitman Advanced Publishing Program, Boston, 1985. MR**775683 (86m:35044)****[14]**M. Jean,*Free surface of the steady flow of a Newtonian fluid in a finite channel*, Arch. Rational Mech. Anal.**74**(1980), 197-217. MR**591221 (82a:76028)****[15]**M. Jean and W.G. Pritchard,*The flow of fluids from nozzles at small Reynolds numbers*, Proc. Roy. Soc. London Ser. A**370**(1980), 61-72.**[16]**J. B. Keller and M. J. Miksis,*Surface tension driven flows*, SIAM J. Appl. Math.**43**(1983), 268-277. MR**700337 (84f:76015)****[17]**N. G. Meyers,*An*-*estimate for the gradient of solutions of second order elliptic divergence equations*, Ann. Scuola Norm. Sup. Pisa Ser. III**17**(1963), 189-206. MR**0159110 (28:2328)****[18]**J. A. Nitsche,*Free boundary problems for Stokes' flows and finite element methods*, Equadiff 6, Lecture Notes in Math., vol. 1192, Springer-Verlag, Berlin, 1986, pp. 327-332. MR**877144****[19]**W. G. Pritchard,*Instability and chaotic behaviour in a free-surface flow*, J. Fluid Mech.**165**(1986), 1-60.**[20]**V. V. Pukhnachov [Pukhnachëv],*Hydrodynamic free boundary problems*, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 301-308.**[21]**R. Rannacher and R. Scott,*Some optimal error estimates for piecewise linear finite element approximations*, Math. Comp.**38**(1982), 437-445. MR**645661 (83e:65180)****[22]**P. A. Raviart and V. Girault,*Finite element method for Navier-Stokes equations. Theory and algorithms*, Springer-Verlag, Berlin and New York, 1986. MR**851383 (88b:65129)****[23]**G. Ryskin and L. G. Leal,*Numerical solution of free-boundary problems in fluid mechanics*, Parts 1-3, J. Fluid Mech.**148**(1984), 1-43.**[24]**H. Saito and L. E. Scriven,*Study of coating flow by the finite element method*, J. Comput. Phys.**42**(1981), 53-76.**[25]**R. Scott and S. Zhang,*Finite element interpolation of nonsmooth functions satisfying boundary conditions*, Math. Comp.**54**(1990), 483-493. MR**1011446 (90j:65021)****[26]**C. G. Simader,*On Dirichlet's boundary value problem*, Lecture Notes in Math., vol. 268, Springer-Verlag, Berlin, 1972. MR**0473503 (57:13169)****[27]**V. A. Solonnikov,*On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface*, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 340-423. MR**670285 (84k:35118)****[28]***FIDAP Theoretical Manual, Revision*4.0, Fluid Dynamics International, Evanston, IL, 1987.

Retrieve articles in *Mathematics of Computation*
with MSC:
35R35,
35J20,
65N30,
76M30

Retrieve articles in all journals with MSC: 35R35, 35J20, 65N30, 76M30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094958-0

Keywords:
Free surface,
finite element method,
variational formulation

Article copyright:
© Copyright 1991
American Mathematical Society