Variational formulation of a model free-boundary problem
Authors:
Patricia Saavedra and L. Ridgway Scott
Journal:
Math. Comp. 57 (1991), 451-475
MSC:
Primary 35R35; Secondary 35J20, 65N30, 76M30
DOI:
https://doi.org/10.1090/S0025-5718-1991-1094958-0
MathSciNet review:
1094958
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The purpose of this work is to present an error analysis of the numerical approximation by a finite element method of a free-surface problem. The analysis has been done in an abstract model which has many of the features of a free-surface problem for a viscous liquid. We study in this paper how the numerical approximation of the free boundary affects the approximation of the other variables of the problem and vice versa.
- [1]
G. Albinus,
coercivity in plane domains with piecewise smooth boundary, Math. Nachr. 118 (1984), 317-336. MR 773628 (87f:35078)
- [2] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim. 16 (1987), 37-50. MR 883473 (88e:35147)
- [3] D. N. Arnold, L. R. Scott, and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 169-192. MR 1007396 (91i:35043)
- [4] J. T. Beale, Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal. 84 (1984), 307-352. MR 721189 (85c:35074)
- [5] J. Bemelmans, Nonstationary viscous fluid flow generated by surface tension I: Existence of classical solution, Univ. Bonn SFB Preprint no. 509, 1982.
- [6] Joran Bergh and Jorgen Löfstrom, Interpolation spaces, an introduction, Springer-Verlag, Berlin, 1976. MR 0482275 (58:2349)
- [7] H. Brezis, Analyse fonctionnelle, Masson Editeur, 1983. MR 697382 (85a:46001)
- [8] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
- [9] P. Clement, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numér. Ser. Rouge 9 (1975), 77-84. MR 0400739 (53:4569)
- [10] C. Cuvelier, On the numerical solution of a capillary free boundary problem governed by the Navier-Stokes equations, Lecture Notes in Phys., vol. 141, Springer-Verlag, Berlin and New York, 1980, pp. 132-137. MR 625686 (82j:76034)
- [11]
J. Douglas, Jr., T. Dupont, and L. Wahlbin, Optimal
error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475-483. MR 0371077 (51:7298)
- [12] R. Durán, R. H. Nochetto, and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D, Math. Comp. 51 (1988), 491-506. MR 935076 (89b:65261)
- [13] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Advanced Publishing Program, Boston, 1985. MR 775683 (86m:35044)
- [14] M. Jean, Free surface of the steady flow of a Newtonian fluid in a finite channel, Arch. Rational Mech. Anal. 74 (1980), 197-217. MR 591221 (82a:76028)
- [15] M. Jean and W.G. Pritchard, The flow of fluids from nozzles at small Reynolds numbers, Proc. Roy. Soc. London Ser. A 370 (1980), 61-72.
- [16] J. B. Keller and M. J. Miksis, Surface tension driven flows, SIAM J. Appl. Math. 43 (1983), 268-277. MR 700337 (84f:76015)
- [17]
N. G. Meyers, An
-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Ser. III 17 (1963), 189-206. MR 0159110 (28:2328)
- [18] J. A. Nitsche, Free boundary problems for Stokes' flows and finite element methods, Equadiff 6, Lecture Notes in Math., vol. 1192, Springer-Verlag, Berlin, 1986, pp. 327-332. MR 877144
- [19] W. G. Pritchard, Instability and chaotic behaviour in a free-surface flow, J. Fluid Mech. 165 (1986), 1-60.
- [20] V. V. Pukhnachov [Pukhnachëv], Hydrodynamic free boundary problems, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 301-308.
- [21] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), 437-445. MR 645661 (83e:65180)
- [22] P. A. Raviart and V. Girault, Finite element method for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin and New York, 1986. MR 851383 (88b:65129)
- [23] G. Ryskin and L. G. Leal, Numerical solution of free-boundary problems in fluid mechanics, Parts 1-3, J. Fluid Mech. 148 (1984), 1-43.
- [24] H. Saito and L. E. Scriven, Study of coating flow by the finite element method, J. Comput. Phys. 42 (1981), 53-76.
- [25] R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), 483-493. MR 1011446 (90j:65021)
- [26] C. G. Simader, On Dirichlet's boundary value problem, Lecture Notes in Math., vol. 268, Springer-Verlag, Berlin, 1972. MR 0473503 (57:13169)
- [27] V. A. Solonnikov, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 340-423. MR 670285 (84k:35118)
- [28] FIDAP Theoretical Manual, Revision 4.0, Fluid Dynamics International, Evanston, IL, 1987.
Retrieve articles in Mathematics of Computation with MSC: 35R35, 35J20, 65N30, 76M30
Retrieve articles in all journals with MSC: 35R35, 35J20, 65N30, 76M30
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1991-1094958-0
Keywords:
Free surface,
finite element method,
variational formulation
Article copyright:
© Copyright 1991
American Mathematical Society