Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Variational formulation of a model free-boundary problem


Authors: Patricia Saavedra and L. Ridgway Scott
Journal: Math. Comp. 57 (1991), 451-475
MSC: Primary 35R35; Secondary 35J20, 65N30, 76M30
DOI: https://doi.org/10.1090/S0025-5718-1991-1094958-0
MathSciNet review: 1094958
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this work is to present an error analysis of the numerical approximation by a finite element method of a free-surface problem. The analysis has been done in an abstract model which has many of the features of a free-surface problem for a viscous liquid. We study in this paper how the numerical approximation of the free boundary affects the approximation of the other variables of the problem and vice versa.


References [Enhancements On Off] (What's this?)

  • [1] G. Albinus, $ {L^p}$ coercivity in plane domains with piecewise smooth boundary, Math. Nachr. 118 (1984), 317-336. MR 773628 (87f:35078)
  • [2] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. Optim. 16 (1987), 37-50. MR 883473 (88e:35147)
  • [3] D. N. Arnold, L. R. Scott, and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 169-192. MR 1007396 (91i:35043)
  • [4] J. T. Beale, Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal. 84 (1984), 307-352. MR 721189 (85c:35074)
  • [5] J. Bemelmans, Nonstationary viscous fluid flow generated by surface tension I: Existence of classical solution, Univ. Bonn SFB Preprint no. 509, 1982.
  • [6] Joran Bergh and Jorgen Löfstrom, Interpolation spaces, an introduction, Springer-Verlag, Berlin, 1976. MR 0482275 (58:2349)
  • [7] H. Brezis, Analyse fonctionnelle, Masson Editeur, 1983. MR 697382 (85a:46001)
  • [8] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [9] P. Clement, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numér. Ser. Rouge 9 (1975), 77-84. MR 0400739 (53:4569)
  • [10] C. Cuvelier, On the numerical solution of a capillary free boundary problem governed by the Navier-Stokes equations, Lecture Notes in Phys., vol. 141, Springer-Verlag, Berlin and New York, 1980, pp. 132-137. MR 625686 (82j:76034)
  • [11] J. Douglas, Jr., T. Dupont, and L. Wahlbin, Optimal $ {L_\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475-483. MR 0371077 (51:7298)
  • [12] R. Durán, R. H. Nochetto, and J. Wang, Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D, Math. Comp. 51 (1988), 491-506. MR 935076 (89b:65261)
  • [13] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Advanced Publishing Program, Boston, 1985. MR 775683 (86m:35044)
  • [14] M. Jean, Free surface of the steady flow of a Newtonian fluid in a finite channel, Arch. Rational Mech. Anal. 74 (1980), 197-217. MR 591221 (82a:76028)
  • [15] M. Jean and W.G. Pritchard, The flow of fluids from nozzles at small Reynolds numbers, Proc. Roy. Soc. London Ser. A 370 (1980), 61-72.
  • [16] J. B. Keller and M. J. Miksis, Surface tension driven flows, SIAM J. Appl. Math. 43 (1983), 268-277. MR 700337 (84f:76015)
  • [17] N. G. Meyers, An $ {L^p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Ser. III 17 (1963), 189-206. MR 0159110 (28:2328)
  • [18] J. A. Nitsche, Free boundary problems for Stokes' flows and finite element methods, Equadiff 6, Lecture Notes in Math., vol. 1192, Springer-Verlag, Berlin, 1986, pp. 327-332. MR 877144
  • [19] W. G. Pritchard, Instability and chaotic behaviour in a free-surface flow, J. Fluid Mech. 165 (1986), 1-60.
  • [20] V. V. Pukhnachov [Pukhnachëv], Hydrodynamic free boundary problems, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 301-308.
  • [21] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), 437-445. MR 645661 (83e:65180)
  • [22] P. A. Raviart and V. Girault, Finite element method for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin and New York, 1986. MR 851383 (88b:65129)
  • [23] G. Ryskin and L. G. Leal, Numerical solution of free-boundary problems in fluid mechanics, Parts 1-3, J. Fluid Mech. 148 (1984), 1-43.
  • [24] H. Saito and L. E. Scriven, Study of coating flow by the finite element method, J. Comput. Phys. 42 (1981), 53-76.
  • [25] R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), 483-493. MR 1011446 (90j:65021)
  • [26] C. G. Simader, On Dirichlet's boundary value problem, Lecture Notes in Math., vol. 268, Springer-Verlag, Berlin, 1972. MR 0473503 (57:13169)
  • [27] V. A. Solonnikov, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar Volume III, Pitman, Boston, 1982, pp. 340-423. MR 670285 (84k:35118)
  • [28] FIDAP Theoretical Manual, Revision 4.0, Fluid Dynamics International, Evanston, IL, 1987.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 35R35, 35J20, 65N30, 76M30

Retrieve articles in all journals with MSC: 35R35, 35J20, 65N30, 76M30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1094958-0
Keywords: Free surface, finite element method, variational formulation
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society