Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Stability analysis of the nonlinear Galerkin method

Author: R. Temam
Journal: Math. Comp. 57 (1991), 477-505
MSC: Primary 65M60; Secondary 35A40, 35B35, 76D05, 76M25
MathSciNet review: 1094959
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Our object in this article is to describe some numerical schemes for the approximation of nonlinear evolution equations, and to study the stability of the schemes. Spatial discretization can be performed by either spectral or pseudospectral methods, finite elements or finite differences; time discretization is done by two-level schemes, partly or fully explicit. The algorithms that we present stem from the study of the evolution equations from the dynamical systems point of view. They are based on a differentiated treatment of the small and large wave lengths, and they are particularly adapted to the integration of such equations on large intervals of time.

References [Enhancements On Off] (What's this?)

  • [1] O. Axelsson and I. Gustafsson, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comp. 40 (1983), 219-242. MR 679442 (84i:65104)
  • [2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, New York, 1988. MR 917480 (89m:76004)
  • [3] J. Céa, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier (Grenoble) 14 (1964), 345-444. MR 0174846 (30:5037)
  • [4] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [5] T. Dubois, F. Jauberteau, and R. Temam, The nonlinear Galerkin method for the two and three dimensional Navier-Stokes equations (to appear). MR 1184428
  • [6] C. Foiaş, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A 131 (1988), 433-436. MR 972615 (89k:65154)
  • [7] C. Foiaş, O. Manley, and R. Temam, Sur l'interaction des petits et grands tourbillons dans les écoulements turbulents, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 497-500; On the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. Numer. Anal. 22 (1988), 93-114. MR 916319 (88j:76026)
  • [8] C. Foiaş, B. Nicolaenko, G. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. 67 (1988), 197-226. MR 964170 (90e:35137)
  • [9] C. Foiaş, G. R. Sell, and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353. MR 943945 (89e:58020)
  • [10] C. Foiaş, G. Sell, and E. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynamical Differential Equations 1 (1989), 199-224. MR 1010966 (90k:35031)
  • [11] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: Theory and applications, Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, PA, 1977. MR 0520152 (58:24983)
  • [12] J. Hale, Asymptotic behavior of dissipative systems, Math. Surveys and Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. MR 941371 (89g:58059)
  • [13] F. Jauberteau, C. Rosier, and R. Temam, The nonlinear Galerkin method in computational fluid dynamics, Appl. Numer. Math. 6 (1989/90), 361-370. MR 1062286 (91g:76078)
  • [14] -, A nonlinear Galerkin method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 80 (1990), 245-260. MR 1067953 (91k:76130)
  • [15] M.S. Jolly, I. G. Kevrekidis, and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computation, preprint, 1990. MR 1069671 (91f:35217)
  • [16] -, Preserving dissipation in approximate inertial forms, preprint, 1990.
  • [17] J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc. 1 (1988), 805-866. MR 943276 (90h:58056)
  • [18] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal. 26 (1989), 1139-1157. MR 1014878 (91a:65220)
  • [19] -, Nonlinear Galerkin methods: The finite elements case, Numer. Math. 57 (1990), 205-226. MR 1057121 (92d:65200)
  • [20] R. Temam, Sur l'approximation des équations de Navier-Stokes, C.R. Acad. Sci. Paris Sér. A 262 (1966), 219-221. MR 0211059 (35:1941)
  • [21] -, Navier-Stokes equations, North-Holland, Amsterdam, 1984.
  • [22] -, Induced trajectories and approximate inertial manifolds, Math. Mod. Numer. Anal. 23 (1989), 541-561. MR 1014491 (90i:58100)
  • [23] -, Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 629-647. MR 1039488 (90m:58128)
  • [24] -, Inertial manifolds and multigrid methods, SIAM J. Math. Anal. 21 (1990), 154-178. MR 1032732 (91e:65132)
  • [25] -, Infinite dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., vol. 68, Springer-Verlag, New York, 1988. MR 953967 (89m:58056)
  • [26] E. S. Titi, Une variété approximante de l'attracteur universel des équations de Navier-Stokes non linéaires de dimension finie, C.R. Acad. Sci. Paris Sér. I Math. 307 (1988), 383-385. MR 965803 (89j:35110)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M60, 35A40, 35B35, 76D05, 76M25

Retrieve articles in all journals with MSC: 65M60, 35A40, 35B35, 76D05, 76M25

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society