Solving a specific Thue-Mahler equation

Authors:
N. Tzanakis and B. M. M. de Weger

Journal:
Math. Comp. **57** (1991), 799-815

MSC:
Primary 11D25; Secondary 11D61, 11Y50

MathSciNet review:
1094961

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The diophantine equation is completely solved as follows. First, a large upper bound for the variables is obtained from the theory of linear forms in *p*-adic and real logarithms of algebraic numbers. Then this bound is reduced to a manageable size by *p*-adic and real computational diophantine approximation, based on the -algorithm. Finally the complete list of solutions is found in a sieving process. The method is in principle applicable to any Thue-Mahler equation, as the authors will show in a forthcoming paper.

**[1]**M. K. Agrawal, J. H. Coates, D. C. Hunt, and A. J. van der Poorten,*Elliptic curves of conductor 11*, Math. Comp.**35**(1980), no. 151, 991–1002. MR**572871**, 10.1090/S0025-5718-1980-0572871-5**[2]**A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász,*Factoring polynomials with rational coefficients*, Math. Ann.**261**(1982), no. 4, 515–534. MR**682664**, 10.1007/BF01457454**[3]**T. N. Shorey and R. Tijdeman,*Exponential Diophantine equations*, Cambridge Tracts in Mathematics, vol. 87, Cambridge University Press, Cambridge, 1986. MR**891406****[4]**N. Tzanakis and B. M. M. de Weger,*On the practical solution of the Thue equation*, J. Number Theory**31**(1989), no. 2, 99–132. MR**987566**, 10.1016/0022-314X(89)90014-0**[5]**Michel Waldschmidt,*A lower bound for linear forms in logarithms*, Acta Arith.**37**(1980), 257–283. MR**598881****[6]**B. M. M. de Weger,*On the practical solution of Thue-Mahler equations, an outline*, Number theory, Vol. II (Budapest, 1987) Colloq. Math. Soc. János Bolyai, vol. 51, North-Holland, Amsterdam, 1990, pp. 1037–1050. MR**1058259****[7]**B. M. M. de Weger,*Algorithms for Diophantine equations*, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR**1026936****[8]**Kun Rui Yu,*Linear forms in 𝑝-adic logarithms*, Acta Arith.**53**(1989), no. 2, 107–186. MR**1027200****[9]**-,*Linear forms in p-adic logarithms*. II (abstract), private communication.

Retrieve articles in *Mathematics of Computation*
with MSC:
11D25,
11D61,
11Y50

Retrieve articles in all journals with MSC: 11D25, 11D61, 11Y50

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1991-1094961-0

Article copyright:
© Copyright 1991
American Mathematical Society