Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of the two-point upstream weighting scheme


Author: Marie-Claude Viallon
Journal: Math. Comp. 57 (1991), 569-584
MSC: Primary 65M12; Secondary 35L65
DOI: https://doi.org/10.1090/S0025-5718-1991-1094962-2
MathSciNet review: 1094962
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence to the entropy solution of a second-order scheme for the resolution of scalar hyperbolic conservation laws is studied. We consider the case of the so-called two-point upstream weighting scheme, widely used in petroleum engineering, to solve fluid flows in porous media problems. We prove convergence of the two-point upstream weighting scheme to the entropy solution for both discrete and semidiscrete approximations.


References [Enhancements On Off] (What's this?)

  • [1] A. Bourgeat, Rapport final du contrat GDF/Université de Saint-Etienne, Publication de l'Equipe d'Analyse Numérique, Lyon-Saint-Etienne, Juin 1987.
  • [2] G. Chavent and B. Cockburn, Consistance et stablilité des schémas LRG pour les lois de conservation scalaires, Rapport de Recherche No 710, INRIA, Centre de Rocquencourt, Juillet 1987.
  • [3] R. J. Di Perna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1979), 137-188. MR 523630 (80i:35119)
  • [4] A. Harten, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal. 21 (1984), 1-23. MR 731210 (85f:65085)
  • [5] A. Y. Le Roux, Convergence of an accurate scheme for first order quasi-linear equations, RAIRO Anal. Numér. 15 (1981), 151-170. MR 618820 (83g:65089)
  • [6] S. Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), 947-961. MR 799122 (87b:65147)
  • [7] S. Osher and S. Chakravarthy, High resolution schemes and the entropy condition, SIAM J. Numer. Anal. 21 (1984), 955-984. MR 760626 (86a:65086)
  • [8] H. S. Price, R. S. Varga, and J. E. Warren, Application of oscillation matrices to diffusion-convection equations, J. Math Phys. 45 (1966), 301-311. MR 0207230 (34:7046)
  • [9] M. R. Todd, P. M. O'Dell, and G. J. Hirasaki, Methods for increased accuracy in numerical reservoir simulators, Trans. Soc. Petroleum Engrs. 253 (1972), 515-530 (Soc. Petroleum Engrs. J.).
  • [10] M. C. Viallon, Etude des schémas Double-Amont et éléments finis discontinus $ {P^0}{P^1}$ pour la résolution numérique des lois de conservation scalaires, Thèse, Université de Saint-Etienne, 1989.
  • [11] J. P. Vila, High-order schemes and entropy condition for nonlinear hyperbolic systems of conservations laws, Math. Comp. 50 (1988), 53-73. MR 917818 (89b:65217)
  • [12] -, Sur la théorie et l'approximation numérique de problèmes hyperboliques non linéaires. Application aux équations de Saint Venant et à la modélisation des avalanches de neige dense. Thèse, Université Paris VI, 1986.
  • [13] M. J. Wheatley, A version of two-point upstream weighting for use in implicit numerical reservoir simulators, paper 7677 of the Fifth. Sympos. on Reservoir Simul., Soc. Petroleum Engrs. of AIME, Denver, 1979.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M12, 35L65

Retrieve articles in all journals with MSC: 65M12, 35L65


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1991-1094962-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society