DERRICK HENRY LEHMER
February 23, 1905–May 22, 1991

Professor Derrick Henry Lehmer, one of the founding editors of Mathematical Tables and Other Aids to Computation, the forerunner of Mathematics of Computation, passed away on May 22, 1991, at Berkeley, California. Professor Lehmer served on the Editorial Board of MTAC from the very beginning in 1943 to 1954, the last five years as chairman. He has been an active and regular contributor to all facets of the journal, his most recent paper having appeared in 1988. An appreciation of Professor Lehmer's scientific accomplishments will appear in a future issue of Mathematics of Computation.

The field of computational mathematics and number theory has lost one of its true pioneers. All who have known Professor Lehmer, either personally or through his work, share in this deep sense of loss.

The Editors
MATHEMATICS OF COMPUTATION

TABLE OF CONTENTS

JULY 1991

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu</td>
<td>Convergence estimates for product iterative methods with applications to domain decomposition</td>
<td>1</td>
</tr>
<tr>
<td>James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu</td>
<td>Convergence estimates for multigrid algorithms without regularity assumptions</td>
<td>23</td>
</tr>
<tr>
<td>Eugene O'Riordan and Martin Stynes</td>
<td>A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions</td>
<td>47</td>
</tr>
<tr>
<td>Clint N. Dawson, Qiang Du, and Todd F. Dupont</td>
<td>A finite difference domain decomposition algorithm for numerical solution of the heat equation</td>
<td>63</td>
</tr>
<tr>
<td>R. H. Nochetto, M. Paolini, and C. Verdi</td>
<td>An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates</td>
<td>73</td>
</tr>
<tr>
<td>J. de Frutos, T. Ortega, and J. M. Sanz-Serna</td>
<td>Pseudospectral method for the “good” Boussinesq equation</td>
<td>109</td>
</tr>
<tr>
<td>M. D. Gunzburger, L. Hou, and T. P. Svobodny</td>
<td>Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls</td>
<td>123</td>
</tr>
<tr>
<td>Dietmar Kröner</td>
<td>Absorbing boundary conditions for the linearized Euler equations in 2-D</td>
<td>153</td>
</tr>
<tr>
<td>Frédéric Coquel and Philippe Le Floch</td>
<td>Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach</td>
<td>169</td>
</tr>
<tr>
<td>H. W. J. Lenferink and M. N. Spijker</td>
<td>On a generalization of the resolvent condition in the Kreiss matrix theorem</td>
<td>211</td>
</tr>
<tr>
<td>H. W. J. Lenferink and M. N. Spijker</td>
<td>On the use of stability regions in the numerical analysis of initial value problems</td>
<td>221</td>
</tr>
<tr>
<td>B. Garcia-Archilla and J. M. Sanz-Serna</td>
<td>A finite difference formula for the discretization of d^3/dx^3 on nonuniform grids</td>
<td>239</td>
</tr>
<tr>
<td>Jim Lawrence</td>
<td>Polytope volume computation</td>
<td>259</td>
</tr>
<tr>
<td>L. Reichel, G. S. Ammar, and W. B. Gragg</td>
<td>Discrete least squares approximation by trigonometric polynomials</td>
<td>273</td>
</tr>
<tr>
<td>J. C. Fiorot and J. Tabka</td>
<td>Shape-preserving C^2 cubic polynomial interpolating splines</td>
<td>291</td>
</tr>
<tr>
<td>Peter Alfeld and Maritza Sirvent</td>
<td>The structure of multivariate superspline spaces of high degree</td>
<td>299</td>
</tr>
<tr>
<td>Walter Gautschi</td>
<td>A class of slowly convergent series and their summation by Gaussian quadrature</td>
<td>309</td>
</tr>
<tr>
<td>Walter Gautschi</td>
<td>On certain slowly convergent series occurring in plate contact problems</td>
<td>325</td>
</tr>
<tr>
<td>David R. Hayes</td>
<td>On the reduction of rank-one Drinfeld modules</td>
<td>339</td>
</tr>
</tbody>
</table>
David C. Hung, Even positive definite unimodular quadratic forms over $\mathbb{Q}(\sqrt{3})$.. 351
Holger W. Gollan, The 5-modular representations of the Tits simple group in the principal block ... 369
D. S. Dummit, Solving solvable quintics ... 387
James A. Maiorana, A classification of the cosets of the Reed-Muller code $R(1,6)$.. 403
Randall Dougherty and Heeralal Janwa, Covering radius computations for binary cyclic codes ... 415
Keith Briggs, A precise calculation of the Feigenbaum constants 435
Reviews and Descriptions of Tables and Books ... 441
Supplement to “An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates” by R. H. Nochetto, M. Paolini, and C. Verdi S1
Microfiche Supplement
Randall Dougherty and Heeralal Janwa, Covering radius computations for binary cyclic codes

TABLE OF CONTENTS
OCTOBER 1991

Patricia Saavedra and L. Ridgway Scott, Variational formulation of a model free-boundary problem .. 451
R. Temam, Stability analysis of the nonlinear Galerkin method 477
So-Hsiang Chou and Qian Li, Mixed finite element methods for compressible miscible displacement in porous media .. 507
Richard S. Falk, Nonconforming finite element methods for the equations of linear elasticity .. 529
Bernardo Cockburn, On the continuity in $BV(\Omega)$ of the L^2-projection into finite element spaces .. 551
Jinchao Xu, Counterexamples concerning a weighted L^2 projection 563
Marie-Claude Viallon, Convergence of the two-point upstream weighting scheme .. 569
Daniele Funaro and David Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment .. 585
Daniele Funaro and Otared Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions 597
Charles Collins and Mitchell Luskin, Optimal-order error estimates for the finite element approximation of the solution of a nonconvex variational problem .. 621
I. Lasiecka and R. Triggiani, Numerical approximations of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications .. 639

G. J. Cooper, On the implementation of singly implicit Runge-Kutta methods .. 663

Roger Alexander, The modified Newton method in the solution of stiff ordinary differential equations .. 673

Lothar Reichel and Gerhard Opfer, Chebyshev-Vandermonde systems ... 703

Peter Walker, Infinitely differentiable generalized logarithmic and exponential functions .. 723

Pierre L’Ecuyer and Shu Tezuka, Structural properties for two classes of combined random number generators .. 735

Helmut Doll and Jim Hoste, A tabulation of oriented links 747

Lawrence C. Washington, A family of cyclic quartic fields arising from modular curves .. 763

Attila Pethő, Complete solutions to families of quartic Thue equations .. 777

N. Tzanakis and B. M. M. de Weger, Solving a specific Thue-Mahler equation .. 799

C. J. Smyth, Ideal 9th-order multigrades and Letać's elliptic curve 817

Daniel M. Gordon and Carl Pomerance, The distribution of Lucas and elliptic pseudoprimes .. 825

Greg Fee and Andrew Granville, The prime factors of Wendt's binomial circulant determinant .. 839

David Moews and Paul C. Moews, A search for aliquot cycles below 10^{10} 849

R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers .. 857

Reviews and Descriptions of Tables and Books 869

Rutishauser 38, Elden and Wittmeyer-Koch 39, Gunzburger 40, Křížek and Neittaanmäki 41, LeVeque 42, Canuto, Hussaini, Quarteroni, and Zang 43, Heinrich 44, Tangora, Editor 45

Indexes to Volumes 56 and 57 .. 881

Supplement to “Numerical approximation of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications” by I. Lasiecka and R. Triggiani .. S13

Microfiche Supplement

Helmut Doll and Jim Hoste, A tabulation of oriented links
Information for Contributors

Authors are encouraged to prepare articles electronically with the AMSTeX software package in the AMS pre-print style and to provide the article in this electronic form for typesetting. While this procedure may not reduce the interval between submission and publication of an article, generally much more accurate copy will be returned for proofreading. Production time for manuscripts prepared with other systems, even \TeX itself without AMSTeX, currently prevents cost-effective use of the existing electronic form. Before sending an AMSTeX manuscript for typesetting, contact the AMS Composition department for details.

Manuscripts prepared by some means other than AMSTeX should be doubled-spaced and produced in the format used by the journal. For journal abbreviations, see the latest Mathematical Reviews volume index. An author should submit the original and two copies of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in “A Manual for Authors of Mathematical Papers,” which is available from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to Walter Gautschi, Chairman, Editorial Committee, Mathematics of Computation, Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The date received, which is published with the final version of an accepted paper, is the date received in the office of the Chairman of the Editorial Committee, and it is the responsibility of the author to submit manuscripts directly to this office.

Each article submitted for publication must be accompanied by a brief and reasonably self-contained abstract, and by 1991 Mathematics Subject Classification numbers. If a list of key words and phrases is included, it will be printed as a footnote on the first page. A list of the classification numbers may be found in the 1990 Subject Index to Mathematical Reviews. Authors are also encouraged to supply electronic addresses when available. These will be printed after the postal address at the end of each article.

Fifty offprints with covers are provided free for each article. In the case of multiple authors, the 50 free offprints will be divided among them. An offprint order form is sent to authors with page proof and should be filled out and returned with the proof.

Copying and Reprinting

Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The appearance of the code on the first page of an article in this journal indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.
Mathematical Impressions

Anatolii T. Fomenko

"I think of my drawings as if they were photographs of a strange but real world, and the nature of this world, one of infinite objects and processes, is not well known. Clearly there is a connection between the mathematical world and the real world.... This is the relationship I see between my drawings and mathematics."—Anatolii Fomenko, in the Introduction

Anatolii Fomenko is a Soviet mathematician with a talent for expressing abstract mathematical concepts through artwork. Some of his works echo those of M.C. Escher in their meticulous rendering of shapes and patterns, while other pieces seem to be more visceral expressions of mathematical ideas. Stimulating to the imagination and to the eye, his rich and evocative work can be interpreted and appreciated in various ways—mathematical, aesthetic, or emotional.

This book contains 84 reproductions of works by Fomenko (23 of them in color). In the accompanying captions, Fomenko explains the mathematical motivations behind the illustrations as well as the emotional, historical, or mythical subtexts they evoke. The illustrations carry the viewer through a mathematical world consisting not of equations and dry logic, but of intuition and inspiration.

Since the mid-1970s, Fomenko has created more than 280 illustrations. Not only have his images filled pages of his own numerous books on geometry, but they have also been chosen to illustrate books on other subjects, such as statistics, probability, and number theory. In addition, his works have found their way into the Soviet scientific and popular press and have been displayed in more than 100 exhibits in the Soviet Union, Holland, India, and much of Eastern Europe.

Fomenko describes his images as “deep reflections about the essence of being and about the place of modern man—in particular, the learned man—in the stormy and unpredictable world surrounding him.” His illustrations are the product of a sensitive, aesthetically attuned mind diving deep below the surface of modern mathematics and emerging with great stories to tell.

1980 Mathematics Subject Classification: 00
ISBN 0-8218-0162-7, LC 90-47514
194 pages (hardcover), December 1990;
Individual member $36. List price $45.
To order, please specify MATIMP/MC

All prices subject to change. Free shipment by surface; for air delivery, please add $6.50 per title. Prepayment required.
Order from Amer-ican Mathematical Society, P.O. Box 1571, Anex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with VISA or MasterCard.
Throughout the history of mathematics, maximum and minimum problems have played an important role in the evolution of the field. Many beautiful and important problems have appeared in a variety of branches of mathematics and physics, as well as in other fields of sciences. The greatest scientists of the past—Euclid, Archimedes, Heron, the Bernoullis, Newton, and many others—took part in seeking solutions to these concrete problems. The solutions stimulated the development of the theory, and, as a result, techniques were elaborated that made possible the solution of a tremendous variety of problems by a single method.

This book, copublished with the Mathematical Association of America (MAA), presents fifteen "stories" designed to acquaint readers with the central concepts of the theory of maxima and minima, as well as with its illustrious history. Unlike most AMS publications, the book is accessible to high school students and would likely be of interest to a wide variety of readers.

In Part One, the author familiarizes readers with many concrete problems that lead to discussion of the work of some of the greatest mathematicians of all time. Part Two introduces a method for solving maximum and minimum problems that originated with Lagrange. While the content of this method has varied constantly, its basic conception has endured for over two centuries. The final story is addressed primarily to those who teach mathematics, for it impinges on the question of how and why to teach. Throughout the book, the author strives to show how the analysis of diverse facts gives rise to a general idea, how this idea is transformed, how it is enriched by new content, and how it remains the same in spite of these changes.

1980 Mathematics Subject Classifications: 00, 01, 46, 49
ISBN 0-8218-0165-1, LC 90-21246
187 pages (softcover), March 1991
Individual Member $18, List Price $23,
To order please specify MAWRLD/MC

All prices subject to change. Free shipment by surface; for air delivery, please add $6.50 per title. Prepayment required. Order from American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901-1571, or call toll free 800-321-4AMS (321-4267) in the continental U.S. and Canada to charge with Visa or MasterCard.
The Mathematical Sciences Professional Directory is a handy reference to a wide variety of organizations of interest to the mathematical sciences community. Updated annually, the Directory lists the officers and committee members of over thirty organizations. In addition to AMS, MAA, and SIAM, there are also listings for such organizations as the American Statistical Association, the Institute of Mathematical Statistics, the Association for Computing Machinery, the National Council of Teachers of Mathematics, the National Academy of Sciences, and the American Association for the Advancement of Science. Addresses and telephone numbers are provided, and, in many cases, the names of key staff are given. The Directory also lists names, addresses, and telephone numbers of mathematical sciences personnel of federal funding agencies. Rounding out the Directory are listings for departments of mathematical sciences in colleges and universities across the U.S. and Canada (including the names of department chairs), listings for mathematical units of nonacademic organizations, and an alphabetical listing of colleges and universities.
Operations research grew out of the application of the scientific method to certain problems of war during World War II. This book tells the story of how operations research became an important activity in the Eighth Air Force.

A small group of civilians, which began with four scientists and two lawyers, comprised the Operations Research Section, an advisory body attached to the Headquarters of the Eighth Bomber Command. During the course of the war in Europe, over forty operations analysts worked with the Eighth Air Force. By the end of 1943, the section had established itself as the authority on measurement and analysis of bombing accuracy, loss and battle damage, aerial gunnery, and general mission analysis, such as fuel consumption. In their dealings with visual bombing, radar, radio countermeasures, V-weapons, and flak analysis, these experts discovered that the air force could do a much better job with fewer bombs by using bombs of the correct size with the correct fuse settings. In addition, the section advised the commanding generals on major aspects of the strategic bombing campaign in Europe, including bombardment of German lines and support of Allied ground troops in the Normandy invasion, the isolation of Normandy by aerial destruction, and the demolition of the German synthetic oil industry.

The author emphasizes the people involved in these historical events, rather than the technical matters with which they dealt. Focusing on a time of great importance in the history of this century, the book reveals the vital role this group of civilian scientists played in the defeat of Germany.
Daniel M. Gordon and Carl Pomerance, The distribution of Lucas and elliptic pseudoprimes ... 825
Greg Fee and Andrew Granville, The prime factors of Wendt's binomial circulant determinant ... 839
David Moews and Paul C. Moews, A search for aliquot cycles below 10^{10} 849
R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers 857
Reviews and Descriptions of Tables and Books 869
 Rutishauser 38, Elden and Wittmeyer-Koch 39, Gunzburger 40, Krížik and Neittaanmäki 41, LeVeque 42, Canuto, Hussaini, Quarteroni, and Zang 43, Heinrich 44, Tangora, Editor 45
Indexes to Volumes 56 and 57 ... 881
Supplement to “Numerical approximation of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications” by I. Lasiecka and R. Triggiani S13
Microfiche Supplement
 Helmut Doll and Jim Hoste, A tabulation of oriented links
MATHEMATICS OF COMPUTATION
TABLE OF CONTENTS
OCTOBER 1991

Patricia Saavedra and L. Ridgway Scott, Variational formulation of a model free-boundary problem ... 451
R. Temam, Stability analysis of the nonlinear Galerkin method 477
So-Hsiang Chou and Qian Li, Mixed finite element methods for compressible miscible displacement in porous media 507
Richard S. Falk, Nonconforming finite element methods for the equations of linear elasticity ... 529
Bernardo Cockburn, On the continuity in $BV(\Omega)$ of the L^2-projection into finite element spaces 551
Jinchao Xu, Counterexamples concerning a weighted L^2 projection 563
Marie-Claude Viallon, Convergence of the two-point upstream weighting scheme ... 569
Daniele Funaro and David Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment .. 585
Daniele Funaro and Otared Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions 597
Charles Collins and Mitchell Luskin, Optimal-order error estimates for the finite element approximation of the solution of a nonconvex variational problem ... 621
I. Lasiecka and R. Triggiani, Numerical approximations of algebraic Riccati equations for abstract systems modelled by analytic semigroups, and applications .. 639
G. J. Cooper, On the implementation of singly implicit Runge-Kutta methods ... 663
Roger Alexander, The modified Newton method in the solution of stiff ordinary differential equations 673
Lothar Reichel and Gerhard Opfer, Chebyshev-Vandermonde systems ... 703
Peter Walker, Infinitely differentiable generalized logarithmic and exponential functions .. 723
Pierre L’Ecuyer and Shu Tezuka, Structural properties for two classes of combined random number generators 735
Helmut Doll and Jim Hoste, A tabulation of oriented links 747
Lawrence C. Washington, A family of cyclic quartic fields arising from modular curves ... 763
Attila Pethô, Complete solutions to families of quartic Thue equations .. 777
N. Tzanakis and B. M. M. de Weger, Solving a specific Thue-Mahler equation ... 799
C. J. Smyth, Ideal 9th-order multigrades and Letac’s elliptic curve 817

(Continued on inside back cover)