Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A new desingularization for vortex methods


Author: Thomas Y. Hou
Journal: Math. Comp. 58 (1992), 103-117
MSC: Primary 76M25; Secondary 65M12, 76C05
DOI: https://doi.org/10.1090/S0025-5718-1992-1106971-6
MathSciNet review: 1106971
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new desingularization is introduced for the vortex method. The idea is to subtract off the most singular part in the discrete approximation to the velocity integral and replace it by the velocity of a vortex patch of constant vorticity, which can be evaluated explicitly. Stability and convergence of the method are obtained in the maximum norm. Preliminary numerical results are presented.


References [Enhancements On Off] (What's this?)

  • [1] C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), 413-440. MR 787568 (86j:76016)
  • [2] J. T. Beale, A convergent 3-D vortex method with grid-free stretching, Math. Comp. 46 (1986), 401-424. MR 829616 (87e:76037)
  • [3] J. T. Beale and A. Majda, Vortex methods II: High order accuracy in two and three dimensions, Math. Comp. 32 (1982), 29-52. MR 658213 (83i:65069b)
  • [4] T. Chacon-Rebollo and T. Y. Hou, A Lagrangian finite element method for the 2-D Euler equations, Comm. Pure Appl. Math. 43 (1990), 735-767. MR 1059327 (91h:65169)
  • [5] A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), 785-796. MR 0395483 (52:16280)
  • [6] G. H. Cottet, Méthodes particulaires pour l'équation d'Euler dans le plan, Thèse 3ème Cycle Univ. P. et M. Curie, 1982.
  • [7] G. H. Cottet, J. Goodman, and T. Y. Hou, Convergence of the grid free point vortex method for the 3-D Euler equations, SIAM J. Numer. Anal. 28 (1991), 291-307. MR 1087505 (92d:65152)
  • [8] J. Goodman, T. Y. Hou, and J. Lowengrub, Convergence of the point vortex method for 2-D Euler equations, Comm. Pure Appl. Math. 43 (1990), 415-430. MR 1040146 (91d:65152)
  • [9] O. Hald, Convergence of vortex methods. II, SIAM J. Numer. Anal. 16 (1979), 726-755. MR 543965 (81b:76015b)
  • [10] T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the 3-D Euler equations, Comm. Pure Appl. Math. 43 (1990), 965-981. MR 1075074 (91k:76026)
  • [11] T. Y. Hou, J. Lowengrub, and Mike Shelley, The exact desingularization of vortex methods and local regridding, Proc. AMS-SIAM Summer Seminar on Vortex Methods and Vortex Dynamics (Seattle, 1990), (C. Anderson and C. Greengard, eds.), SIAM Publication.
  • [12] A. Leonard, Computing three-dimensional incompressible flows with vortex elements, Ann. Rev. Fluid Mech. 17 (1985), 523-559.
  • [13] A. Majda, Vortex dynamics: Numerical analysis, scientific computing, and mathematical theory, Proc. 1st Internat. Congr. in Applied Mathematics, Paris 1987. MR 976858 (90f:65227)
  • [14] M. Perlman, On the accuracy of vortex methods, J. Comput. Phys. 59 (1985), 200-223. MR 796606 (86j:76018)
  • [15] P. A. Raviart, An analysis of particle methods, CIME Course, Como, Italy, 1983.
  • [16] L. Rosenhead, The point vortex approximation of a vortex sheet, Proc. Roy. Soc. London Ser. A 134 (1932), 170-192.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 76M25, 65M12, 76C05

Retrieve articles in all journals with MSC: 76M25, 65M12, 76C05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1106971-6
Keywords: Vortex method, desingularization, large time accuracy
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society