Analysis of locally stabilized mixed finite element methods for the Stokes problem

Authors:
Nasserdine Kechkar and David Silvester

Journal:
Math. Comp. **58** (1992), 1-10

MSC:
Primary 65N15; Secondary 65N30, 76D07, 76M10

DOI:
https://doi.org/10.1090/S0025-5718-1992-1106973-X

MathSciNet review:
1106973

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a locally stabilized finite element formulation of the Stokes problem is analyzed. A macroelement condition which is sufficient for the stability of (locally stabilized) mixed methods based on a piecewise constant pressure approximation is introduced. By satisfying this condition, the stability of the quadrilateral, and the triangular element, can be established.

**[1]**I. Babuška,*Error bounds for finite element method*, Numer. Math.**16**(1971), 322-333. MR**0288971 (44:6166)****[2]**I. Babuška, J. Osborn, and J. Pitkäranta,*Analysis of mixed methods using mesh dependent norms*, Math. Comp.**35**(1980), 1039-1062. MR**583486 (81m:65166)****[3]**J. Boland and R. A. Nicolaides,*Stability of finite elements under divergence constraints*, SIAM J. Numer. Anal.**20**(1983), 722-731. MR**708453 (85e:65046)****[4]**J. H. Bramble and J. E. Pasciak,*A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems*, Math. Comp.**50**(1988), 1-17. MR**917816 (89m:65097a)****[5]**F. Brezzi and J. Pitkäranta,*On the stabilisation of finite element approximations of the Stokes problem*, Efficient Solutions of Elliptic Systems (W. Hackbusch, ed.), Notes on Numerical Fluid Mechanics, vol. 10, Vieweg, Braunschweig, 1984, pp. 11-19.**[6]**J. Douglas, Jr. and J. Wang,*An absolutely stabilized finite element method for the Stokes problem*, Math. Comp.**52**(1989), 495-508. MR**958871 (89j:65069)****[7]**V. Girault and P. A. Raviart,*Finite element methods for Navier-Stokes equations*:*theory and algorithms*, Springer-Verlag, Berlin, Heidelberg, 1986. MR**851383 (88b:65129)****[8]**M. D. Gunzburger,*Finite element methods for viscous incompressible flows*, Academic Press, London, 1989. MR**1017032 (91d:76053)****[9]**T. J. R. Hughes and L. P. Franca,*A new finite element formulation for CFD*: VII.*The Stokes problem with various well-posed boundary conditions*:*Symmetric formulations that converge for all velocity/ pressure spaces*, Comput. Methods Appl. Mech. Engrg.**65**(1987), 85-96. MR**914609 (89j:76015g)****[10]**N. Kechkar,*Analysis and application of locally stabilised mixed finite element methods*, Ph.D. Thesis, University of Manchester Institute of Science and Technology, 1989.**[11]**N. Kechkar and D. J. Silvester,*The stabilisation of low order mixed finite elements for incompressible flow*, Proc. 5th Internat. Sympos. on Numerical Methods in Engineering (R. Gruber et al., eds.), vol. 2, Computational Mechanics Publications, Southampton, 1989, pp. 111-116. MR**1052962****[12]**J. Pitkäranta and T. Saarinen,*A multigrid version of a simple finite element method for the Stokes problem*, Math. Comp.**45**(1985), 1-14. MR**790640 (86h:65168)****[13]**R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths,*The cause and cure*(?)*of the spurious pressures generated by certain finite element method solutions of the incompressible Navier-Stokes equations*, Parts 1 and 2, Internat. J. Numer. Methods Fluids**1**(1981), 17-43; 171-204. MR**621064 (83i:65083b)****[14]**D. J. Silvester and N. Kechkar,*Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem*, Comput. Methods Appl. Mech. Engrg.**79**(1990), 71-86. MR**1044204 (90m:76011)****[15]**R. Stenberg,*Analysis of mixed finite elements for the Stokes problem*:*A unified approach*, Math. Comp.**42**(1984), 9-23. MR**725982 (84k:76014)****[16]**R. Verfürth,*A multilevel algorithm for mixed problems*, SIAM J. Numer. Anal.**21**(1984), 264-271. MR**736330 (85f:65112)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N15,
65N30,
76D07,
76M10

Retrieve articles in all journals with MSC: 65N15, 65N30, 76D07, 76M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1106973-X

Keywords:
Stabilized finite element,
Stokes equation

Article copyright:
© Copyright 1992
American Mathematical Society