Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Embedded diagonally implicit Runge-Kutta algorithms on parallel computers

Authors: P. J. van der Houwen, B. P. Sommeijer and W. Couzy
Journal: Math. Comp. 58 (1992), 135-159
MSC: Primary 65L06; Secondary 65Y05
MathSciNet review: 1106986
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations can be solved in parallel and are singly diagonal-implicit on each processor. The algorithms are based on diagonally implicit iteration of fully implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such a way that the resulting algorithm is $ A(\alpha )$-stable or $ L(\alpha )$-stable with $ \alpha $ equal or very close to $ \pi /2$. In this way, highly stable, singly diagonal-implicit Runge-Kutta methods of orders up to 10 can be constructed. Because of the iterative nature of the methods, embedded formulas of lower orders are automatically available, allowing a strategy for step and order variation.

References [Enhancements On Off] (What's this?)

  • [1] Roger Alexander, Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s, SIAM J. Numer. Anal. 14 (1977), no. 6, 1006–1021. MR 0458890
  • [2] K. Burrage, The error behaviour of a general class of predictor-corrector methods, CMSR Report, University of Liverpool, 1989.
  • [3] J. C. Butcher, The numerical analysis of ordinary differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR 878564
  • [4] T. D. Bui, Errata and comments on: “Semi-implicit Runge-Kutta procedures with error estimates for the numerical integration of stiff systems of ordinary differential equations” (J. Assoc. Comput. Mach. 23 (1976), no. 3, 455–460), by J. R. Cash, J. Assoc. Comput. Mach. 24 (1977), no. 4, 623. MR 0471313
  • [5] J. R. Cash and C. B. Liem, On the design of a variable order, variable step diagonally implicit Runge-Kutta algorithm, J. Inst. Math. Appl. 26 (1980), no. 1, 87–91. MR 594345
  • [6] M. Crouzeix, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Ph. D. Thesis, Université de Paris, 1975.
  • [7] K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. MR 774402
  • [8] W. H. Enright, T. E. Hull, and B. Lindberg, Comparing numerical methods for stiff systems of ODEs, BIT 15 (1975), 10-48.
  • [9] B. A. Gottwald and G. Wanner, A reliable Rosenbrock integrator for stiff differential equations, Computing 26 (1981), no. 4, 355–360 (English, with German summary). MR 620404, 10.1007/BF02237954
  • [10] E. Hairer, Ch. Lubich, and M. Roche, Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations, BIT 28 (1988), no. 3, 678–700. MR 963310, 10.1007/BF01941143
  • [11] A. C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation solvers, ACM/SIGNUM Newsletter (4) 15 (1980), 10-11.
  • [12] P. J. van der Houwen and B. P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize control, J. Comput. Appl. Math. 29 (1990), no. 1, 111–127. MR 1032682, 10.1016/0377-0427(90)90200-J
  • [13] P. J. van der Houwen and B. P. Sommeijer, Iterated Runge-Kutta methods on parallel computers, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1000–1028. MR 1114972, 10.1137/0912054
  • [14] P. J. van der Houwen, B. P. Sommeijer, and W. Couzy, Embedded diagonally implicit Runge-Kutta algorithms on parallel computers, Report NM-R8912, Centre for Mathematics and Computer Science, Amsterdam, 1989.
  • [15] A. Iserles and S. P. Nørsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10 (1990), no. 4, 463–488. MR 1078505, 10.1093/imanum/10.4.463
  • [16] K. Jackson and S. P. Nørsett, Parallel Runge-Kutta methods, manuscript, 1988.
  • [17] P. Kaps, Rosenbrock-type methods, Numerical Methods for Stiff Initial Value Problems (G. Dahlquist and R. Jeltsch, eds.), Bericht Nr. 9, Inst. für Geometrie und Praktische Mathematik der RWTH Aachen, 1981.
  • [18] I. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3/87, Division of Numerical Mathematics, University of Trondheim, 1987.
  • [19] S. P. Nørsett, Semi-explicit Runge-Kutta methods, Report Mathematics and Computation No. 6/74, Dept. of Mathematics, University of Trondheim, 1974.
  • [20] Syvert P. Nørsett, 𝐶-polynomials for rational approximation to the exponential function, Numer. Math. 25 (1975/76), no. 1, 39–56. MR 0410189
  • [21] Syvert P. Nørsett and Harald H. Simonsen, Aspects of parallel Runge-Kutta methods, Numerical methods for ordinary differential equations (L’Aquila, 1987), Lecture Notes in Math., vol. 1386, Springer, Berlin, 1989, pp. 103–117. MR 1015106, 10.1007/BFb0089234
  • [22] Syvert P. Nørsett and Per G. Thomsen, Embedded SDIRK-methods of basic order three, BIT 24 (1984), no. 4, 634–646. MR 764834, 10.1007/BF01934920
  • [23] Kris Stewart, Avoiding stability-induced inefficiencies in BDF methods, J. Comput. Appl. Math. 29 (1990), no. 3, 357–367. MR 1051795, 10.1016/0377-0427(90)90017-T
  • [24] H. W. Tam, Parallel methods for the numerical solution of ordinary differential equations, Computational ordinary differential equations (London, 1989) Inst. Math. Appl. Conf. Ser. New Ser., vol. 39, Oxford Univ. Press, New York, 1992, pp. 393–404. MR 1387151
  • [25] A. Wolfbrandt, A study of Rosenbrock processes with respect to order conditions and stiff stability, Ph. D. Thesis, Chalmers University of Technology, Göteborg, 1977.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L06, 65Y05

Retrieve articles in all journals with MSC: 65L06, 65Y05

Additional Information

Keywords: Runge-Kutta methods, parallelism
Article copyright: © Copyright 1992 American Mathematical Society