On mixed finite element methods for the Reissner-Mindlin plate model

Authors:
Ricardo Durán and Elsa Liberman

Journal:
Math. Comp. **58** (1992), 561-573

MSC:
Primary 65N30; Secondary 65N12, 65N15, 73K10, 73V05

DOI:
https://doi.org/10.1090/S0025-5718-1992-1106965-0

MathSciNet review:
1106965

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we analyze the convergence of mixed finite element approximations to the solution of the Reissner-Mindlin plate problem. We show that several known elements fall into our analysis, thus providing a unified approach. We also introduce a low-order triangular element which is optimal-order convergent uniformly in the plate thickness.

**[1]**D. N. Arnold, F. Brezzi, and M. Fortin,*A stable finite element for the Stokes equations*, Calcolo**21**(1984), 337-344. MR**799997 (86m:65136)****[2]**D. N. Arnold and R. S. Falk,*A uniformly accurate finite element method for the Reissner-Mindlin plate*, SIAM J. Numer. Anal.**26**(1989), 1276-1290. MR**1025088 (91c:65068)****[3]**-,*The boundary layer for the Reissner-Mindlin plate model*, SIAM J. Math. Anal.**21**(1990), 281-312. MR**1038893 (91c:73053)****[4]**K. J. Bathe and F. Brezzi,*On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation*, MAFELAP V (J. R. Whiteman, ed.), London, 1985, pp. 491-503. MR**811058 (87f:65125)****[5]**-,*A simplified analysis of two plate bending elements--the MITC4 and MITC9 elements*, NUMETA 87 (G. N. Pande and J. Middleton, eds.), Numerical Techniques for Engineering Analysis and Design, vol. 1, Martinus Nijhoff, Dordrecht, 1987.**[6]**K. J. Bathe and E. N. Dvorkin,*A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation*, J. Numer. Methods Engrg.**21**(1985), 367-383.**[7]**F. Brezzi, K. J. Bathe, and M. Fortin,*Mixed-interpolated elements for Reissner-Mindlin plates*, Internat. J. Numer. Methods Engrg.**28**(1989), 1787-1801. MR**1008138 (90g:73090)****[8]**F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini,*Efficient rectangular mixed finite elements in two and three space variables*, Model. Math. Anal. Numér.**21**(1987), 581-604. MR**921828 (88j:65249)****[9]**F. Brezzi and M. Fortin,*Numerical approximation of Mindlin-Reissner plates*, Math. Comp.**47**(1986), 151-158. MR**842127 (87g:73057)****[10]**-,*Hybrid and mixed finite element methods*(to appear).**[11]**P. Ciarlet,*The finite element method for elliptic problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[12]**M. Crouzeix and P. A. Raviart,*Conforming and nonconforming finite element methods for solving the stationary Stokes equations*, RAIRO Anal. Numér.**R-3**(1973), 33-76. MR**0343661 (49:8401)****[13]**V. Girault and P. A. Raviart,*Finite element methods for Navier-Stokes equations*, Lecture Notes in Math., vol. 749, Springer, 1986. MR**851383 (88b:65129)****[14]**P. A. Raviart and J. M. Thomas,*A mixed finite element method for second order elliptic problems*, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., vol. 606, Springer, 1977, pp. 292-315. MR**0483555 (58:3547)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N12,
65N15,
73K10,
73V05

Retrieve articles in all journals with MSC: 65N30, 65N12, 65N15, 73K10, 73V05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1106965-0

Keywords:
Reissner,
Mindlin,
mixed finite elements

Article copyright:
© Copyright 1992
American Mathematical Society