Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On mixed finite element methods for the Reissner-Mindlin plate model


Authors: Ricardo Durán and Elsa Liberman
Journal: Math. Comp. 58 (1992), 561-573
MSC: Primary 65N30; Secondary 65N12, 65N15, 73K10, 73V05
DOI: https://doi.org/10.1090/S0025-5718-1992-1106965-0
MathSciNet review: 1106965
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we analyze the convergence of mixed finite element approximations to the solution of the Reissner-Mindlin plate problem. We show that several known elements fall into our analysis, thus providing a unified approach. We also introduce a low-order triangular element which is optimal-order convergent uniformly in the plate thickness.


References [Enhancements On Off] (What's this?)

  • [1] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), 337-344. MR 799997 (86m:65136)
  • [2] D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), 1276-1290. MR 1025088 (91c:65068)
  • [3] -, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 21 (1990), 281-312. MR 1038893 (91c:73053)
  • [4] K. J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, MAFELAP V (J. R. Whiteman, ed.), London, 1985, pp. 491-503. MR 811058 (87f:65125)
  • [5] -, A simplified analysis of two plate bending elements--the MITC4 and MITC9 elements, NUMETA 87 (G. N. Pande and J. Middleton, eds.), Numerical Techniques for Engineering Analysis and Design, vol. 1, Martinus Nijhoff, Dordrecht, 1987.
  • [6] K. J. Bathe and E. N. Dvorkin, A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, J. Numer. Methods Engrg. 21 (1985), 367-383.
  • [7] F. Brezzi, K. J. Bathe, and M. Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg. 28 (1989), 1787-1801. MR 1008138 (90g:73090)
  • [8] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables, Model. Math. Anal. Numér. 21 (1987), 581-604. MR 921828 (88j:65249)
  • [9] F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47 (1986), 151-158. MR 842127 (87g:73057)
  • [10] -, Hybrid and mixed finite element methods (to appear).
  • [11] P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [12] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. R-3 (1973), 33-76. MR 0343661 (49:8401)
  • [13] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Lecture Notes in Math., vol. 749, Springer, 1986. MR 851383 (88b:65129)
  • [14] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., vol. 606, Springer, 1977, pp. 292-315. MR 0483555 (58:3547)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N12, 65N15, 73K10, 73V05

Retrieve articles in all journals with MSC: 65N30, 65N12, 65N15, 73K10, 73V05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1106965-0
Keywords: Reissner, Mindlin, mixed finite elements
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society