Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical analysis of the deterministic particle method applied to the Wigner equation


Authors: Anton Arnold and Francis Nier
Journal: Math. Comp. 58 (1992), 645-669
MSC: Primary 65M12; Secondary 35Q40, 81Q05
DOI: https://doi.org/10.1090/S0025-5718-1992-1122055-5
MathSciNet review: 1122055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Wigner equation of quantum mechanics has the form of a kinetic equation with a pseudodifferential operator in a Fourier integral form which requires great care in the numerical approximation. This paper is concerned with the numerical analysis of the weighted particle method, introduced by S. Mas-Gallic and P. A. Raviart, applied to this equation. In particular, we will prove convergence of the method in a physically relevant case, where the Wigner equation models the quantum tunneling of electrons through a potential barrier.


References [Enhancements On Off] (What's this?)

  • [1] S. Mas-Gallic and P. A. Raviart, A particle method for first-order symmetric systems, Numer. Math. 51 (1987), 323-352. MR 895090 (88d:65132)
  • [2] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), 749-759.
  • [3] W. R. Frensley, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B 36 (1987), 1570-1580.
  • [4] U. Ravaioli, M. A. Osman, W. Pötz, N. Kluksdahl, and D. K. Ferry, Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach, Physica B 134 (1985), 36-40.
  • [5] C. Ringhofer, A spectral method for the numerical simulation of quantum tunneling phenomena, SIAM J. Numer. Anal. 27 (1991), 32-50. MR 1034919 (91c:65074)
  • [6] S. Mas-Gallic and F. Poupaud, Approximation of the transport equation by a particle method, Trans. Theory Statist. Phys. 17 (1988), 311-345. MR 968659 (89i:82109)
  • [7] S. Mas-Gallic, A deterministic particle method for the linearized Boltzmann equation, Trans. Theory Statist. Phys. 16 (1987), 855-857. MR 906929 (88k:82078)
  • [8] P. Degond and B. Niclot, Numerical analysis of the weighted particle method applied to the semiconductor Boltzmann equation, Numer. Math. 55 (1989), 599-618. MR 998912 (90g:65166)
  • [9] P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Meth. Appl. Sci. 11 (1989), 459-469. MR 1001097 (90h:35217)
  • [10] P. A. Raviart, An analysis of particle methods, Lecture Notes in Math., vol. 1127, Springer-Verlag, Berlin, Heidelberg, New York, 1985. MR 802214 (87h:76010)
  • [11] Robert A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [12] P. Degond and F. Guyot-Delaurens, Particle simulations of the semiconductor Boltzmann equation for one-dimensional homogeneous structures, J. Comput. Phys. (submitted). MR 1070472 (91m:82131)
  • [13] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983. MR 710486 (85g:47061)
  • [14] G. H. Cottet and P. A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations, SIAM J. Numer. Anal. 21 (1984), 52-76. MR 731212 (85c:82048)
  • [15] P. Degond and P. A. Markowich, A mathematical analysis of quantum transport in three-dimensional crystals, Ann. Mat. Pura Appl. (to appear).
  • [16] -, A quantum transport model for semiconductors: the Wigner-Poisson problem on a bounded Brillouin zone, Math. Mod. Numer. Anal. (to appear).
  • [17] R. Dautray and J. L. Lions, Analyse mathématique et calcul numérique, Masson, Paris, 1985.
  • [18] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor equations, Springer-Verlag, Wien-New York, 1990. MR 1063852 (91j:78011)
  • [19] F. Nier, Application de la méthode particulaire à l'équation de Wigner-mise en oeuvre numérique, Thèse de l'Ecole Polytechnique, Palaiseau, France, 1991.
  • [20] M. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-adjointness, Academic Press, New York, 1972. MR 0493420 (58:12429b)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M12, 35Q40, 81Q05

Retrieve articles in all journals with MSC: 65M12, 35Q40, 81Q05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1122055-5
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society