Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel

Authors:
C. Chen, V. Thomée and L. B. Wahlbin

Journal:
Math. Comp. **58** (1992), 587-602

MSC:
Primary 65M60; Secondary 65R20

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122059-2

MathSciNet review:
1122059

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give error estimates for the numerical solution by means of the Galerkin finite element method of an integro-differential equation of parabolic type with a memory term containing a weakly singular kernel. Optimal-order estimates are shown for spatially semidiscrete and completely discrete methods. Special attention is paid to the regularity of the exact solution.

**[1]**J. R. Cannon and Y. Lin,*A priori**error estimates for Galerkin method for nonlinear parabolic integro-differential equations.*, Manuscript, 1987. MR**960018 (90c:45012)****[2]**P. G. Ciarlet,*Basic error estimates for elliptic problems*, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. II, North-Holland, Amsterdam, 1991, pp. 19-351. MR**1115237****[3]**A. Friedman and M. Shinbrot,*Volterra integral equations in Banach space*, Trans. Amer. Math. Soc.**126**(1967), 131-179. MR**0206754 (34:6571)****[4]**R. C. Grimmer and A. J. Pritchard,*Analytic resolvent operators for integral equations in Banach space*, J. Differential Equations**50**(1983), 234-259. MR**719448 (85k:45023)****[5]**M. L. Heard,*An abstract parabolic Volterra integrodifferential equation*, SIAM J. Math. Anal.**13**(1982), 81-105. MR**641542 (83d:45010)****[6]**M.-N. LeRoux and V. Thomée,*Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data*, SIAM J. Numer. Anal.**26**(1989), 1291-1309. MR**1025089 (90m:65172)****[7]**Y. Lin, V. Thomée, and L. Wahlbin,*Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations*, SIAM J. Numer. Anal.**28**(1991), 1047-1070. MR**1111453 (92k:65193)****[8]**P. Linz,*Analytic and numerical methods for Volterra equations*, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1985. MR**796318 (86m:65163)****[9]**A. Lorenzi and E. Sinestrari,*An inverse problem in the theory of materials with memory*, Nonlinear Anal. Theory Methods Appl.**12**(1988), 1317-1335. MR**972401 (90b:35242)****[10]**A. Lunardi and E. Sinestrari, -*regularity of non-autonomous linear integro-differential equations of parabolic type*, J. Differential Equations**63**(1986), 88-116. MR**840594 (88a:45013)****[11]**R. K. Miller and A. Feldstein,*Smoothness of solutions of Volterra integral equations with weakly singular kernels*, SIAM J. Numer. Anal.**2**(1971), 242-258. MR**0287258 (44:4465)****[12]**M. Renardy, W. J. Hrusa, and J. A. Nohel,*Mathematical Problems in Viscoelasticity*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific and Technical, Harlow, Essex, 1987. MR**919738 (89b:35134)****[13]**I. H. Sloan and V. Thomée,*Time discretization of an integro-differential equation of parabolic type*, SIAM J. Numer. Anal.**23**(1986), 1052-1061. MR**859017 (87j:65113)****[14]**V. Thomée and N.-Y. Zhang,*Error estimates for semidiscrete finite element methods for parabolic integro-differential equations*, Math. Comp.**53**(1989), 121-139. MR**969493 (90h:65221)****[15]**E. G. Yanik and G. Fairweather,*Finite element methods for parabolic and hyperbolic partial integro-differential equations*, Nonlinear Anal.**12**(1988), 785-809. MR**954953 (90e:65196)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
65R20

Retrieve articles in all journals with MSC: 65M60, 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122059-2

Keywords:
Parabolic,
integro-differential equation,
memory,
Galerkin,
finite element,
weakly singular kernel

Article copyright:
© Copyright 1992
American Mathematical Society