Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel

Authors: C. Chen, V. Thomée and L. B. Wahlbin
Journal: Math. Comp. 58 (1992), 587-602
MSC: Primary 65M60; Secondary 65R20
MathSciNet review: 1122059
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give error estimates for the numerical solution by means of the Galerkin finite element method of an integro-differential equation of parabolic type with a memory term containing a weakly singular kernel. Optimal-order estimates are shown for spatially semidiscrete and completely discrete methods. Special attention is paid to the regularity of the exact solution.

References [Enhancements On Off] (What's this?)

  • [1] J. R. Cannon and Y. Lin, A priori $ {L^2}$ error estimates for Galerkin method for nonlinear parabolic integro-differential equations., Manuscript, 1987. MR 960018 (90c:45012)
  • [2] P. G. Ciarlet, Basic error estimates for elliptic problems, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. II, North-Holland, Amsterdam, 1991, pp. 19-351. MR 1115237
  • [3] A. Friedman and M. Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 126 (1967), 131-179. MR 0206754 (34:6571)
  • [4] R. C. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equations in Banach space, J. Differential Equations 50 (1983), 234-259. MR 719448 (85k:45023)
  • [5] M. L. Heard, An abstract parabolic Volterra integrodifferential equation, SIAM J. Math. Anal. 13 (1982), 81-105. MR 641542 (83d:45010)
  • [6] M.-N. LeRoux and V. Thomée, Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal. 26 (1989), 1291-1309. MR 1025089 (90m:65172)
  • [7] Y. Lin, V. Thomée, and L. Wahlbin, Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal. 28 (1991), 1047-1070. MR 1111453 (92k:65193)
  • [8] P. Linz, Analytic and numerical methods for Volterra equations, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1985. MR 796318 (86m:65163)
  • [9] A. Lorenzi and E. Sinestrari, An inverse problem in the theory of materials with memory, Nonlinear Anal. Theory Methods Appl. 12 (1988), 1317-1335. MR 972401 (90b:35242)
  • [10] A. Lunardi and E. Sinestrari, $ {C^\infty }$-regularity of non-autonomous linear integro-differential equations of parabolic type, J. Differential Equations 63 (1986), 88-116. MR 840594 (88a:45013)
  • [11] R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal. 2 (1971), 242-258. MR 0287258 (44:4465)
  • [12] M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific and Technical, Harlow, Essex, 1987. MR 919738 (89b:35134)
  • [13] I. H. Sloan and V. Thomée, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), 1052-1061. MR 859017 (87j:65113)
  • [14] V. Thomée and N.-Y. Zhang, Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp. 53 (1989), 121-139. MR 969493 (90h:65221)
  • [15] E. G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal. 12 (1988), 785-809. MR 954953 (90e:65196)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M60, 65R20

Retrieve articles in all journals with MSC: 65M60, 65R20

Additional Information

Keywords: Parabolic, integro-differential equation, memory, Galerkin, finite element, weakly singular kernel
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society