Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation

Authors:
Charles M. Elliott and Stig Larsson

Journal:
Math. Comp. **58** (1992), 603-630, S33

MSC:
Primary 65M60; Secondary 65M15

MathSciNet review:
1122067

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method for the Cahn-Hilliard equation (a semilinear parabolic equation of fourth order) is analyzed, both in a spatially semidiscrete case and in a completely discrete case based on the backward Euler method. Error bounds of optimal order over a finite time interval are obtained for solutions with smooth and nonsmooth initial data. A detailed study of the regularity of the exact solution is included. The analysis is based on local Lipschitz conditions for the nonlinearity with respect to Sobolev norms, and the existence of a Ljapunov functional for the exact and the discretized equations is essential. A result concerning the convergence of the attractor of the corresponding approximate nonlinear semigroup (upper semicontinuity with respect to the discretization parameters) is obtained as a simple application of the nonsmooth data error estimate.

**[1]**J. W. Cahn and J. E. Hilliard,*Free energy of a nonuniform system*I. Interfacial free energy, J. Chem. Phys.**28**(1958), 258-267.**[2]**Michel Crouzeix and Vidar Thomée,*On the discretization in time of semilinear parabolic equations with nonsmooth initial data*, Math. Comp.**49**(1987), no. 180, 359–377. MR**906176**, 10.1090/S0025-5718-1987-0906176-3**[3]**M. Crouzeix, V. Thomée, and L. B. Wahlbin,*Error estimates for spatially discrete approximations of semilinear parabolic equations with initial data of low regularity*, Math. Comp.**53**(1989), no. 187, 25–41. MR**970700**, 10.1090/S0025-5718-1989-0970700-7**[4]**Q. Du,*Finite element solution of a continuum model of phase separation*, preprint.**[5]**Q. Du and R. A. Nicolaides,*Numerical analysis of a continuum model for phase transition*, Research Report No. 88-23, Department of Mathematics, Carnegie Mellon University, 1988.**[6]**Charles M. Elliott and Donald A. French,*A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation*, SIAM J. Numer. Anal.**26**(1989), no. 4, 884–903. MR**1005515**, 10.1137/0726049**[7]**C. M. Elliott, D. A. French, and F. A. Milner,*A second order splitting method for the Cahn-Hilliard equation*, Numer. Math.**54**(1989), no. 5, 575–590. MR**978609**, 10.1007/BF01396363**[8]**Charles M. Elliott and Zheng Songmu,*On the Cahn-Hilliard equation*, Arch. Rational Mech. Anal.**96**(1986), no. 4, 339–357. MR**855754**, 10.1007/BF00251803**[9]**Jack K. Hale,*Asymptotic behavior of dissipative systems*, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR**941371****[10]**Jack K. Hale, Xiao-Biao Lin, and Geneviève Raugel,*Upper semicontinuity of attractors for approximations of semigroups and partial differential equations*, Math. Comp.**50**(1988), no. 181, 89–123. MR**917820**, 10.1090/S0025-5718-1988-0917820-X**[11]**Hans-Peter Helfrich,*Error estimates for semidiscrete Galerkin type approximations to semilinear evolution equations with nonsmooth initial data*, Numer. Math.**51**(1987), no. 5, 559–569. MR**910865**, 10.1007/BF01400356**[12]**John G. Heywood and Rolf Rannacher,*Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time*, SIAM J. Numer. Anal.**23**(1986), no. 4, 750–777. MR**849281**, 10.1137/0723049**[13]**Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin,*Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data*, Math. Comp.**49**(1987), no. 180, 331–357. MR**906175**, 10.1090/S0025-5718-1987-0906175-1**[14]**Peter E. Kloeden and J. Lorenz,*Lyapunov stability and attractors under discretization*, Differential equations (Xanthi, 1987) Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York, 1989, pp. 361–368. MR**1021735****[15]**B. Nicolaenko, B. Scheurer, and R. Temam,*Some global dynamical properties of a class of pattern formation equations*, Comm. Partial Differential Equations**14**(1989), no. 2, 245–297. MR**976973**, 10.1080/03605308908820597**[16]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****[17]**Roger Temam,*Infinite-dimensional dynamical systems in mechanics and physics*, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR**953967****[18]**Vidar Thomée,*Galerkin finite element methods for parabolic problems*, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR**744045****[19]**Vidar Thomée and Lars Wahlbin,*On Galerkin methods in semilinear parabolic problems*, SIAM J. Numer. Anal.**12**(1975), 378–389. MR**0395269****[20]**Wolf von Wahl,*On the Cahn-Hilliard equation 𝑢’+Δ²𝑢-Δ𝑓(𝑢)=0*, Delft Progr. Rep.**10**(1985), no. 4, 291–310. Mathematics and mathematical engineering (Delft, 1985). MR**839466****[21]**Zheng Songmu,*Asymptotic behavior of solution to the Cahn-Hillard equation*, Appl. Anal.**23**(1986), no. 3, 165–184. MR**870486**, 10.1080/00036818608839639

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
65M15

Retrieve articles in all journals with MSC: 65M60, 65M15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122067-1

Keywords:
Cahn-Hilliard equation,
nonlinear,
semigroup,
smoothing property,
finite element,
backward Euler method,
error estimate,
nonsmooth data,
upper semicontinuity,
attractor

Article copyright:
© Copyright 1992
American Mathematical Society