Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of the zeros of $ p$-adic $ L$-functions


Authors: R. Ernvall and T. Metsänkylä
Journal: Math. Comp. 58 (1992), 815-830, S37
MSC: Primary 11R23; Secondary 11R42, 11Y70
DOI: https://doi.org/10.1090/S0025-5718-1992-1122068-3
MathSciNet review: 1122068
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors have computed the zeros of the Kubota-Leopoldt p-adic L-functions $ {L_p}(s,\chi )$ for some small odd primes p and for a number of Dirichlet characters $ \chi $. The zeros of the corresponding Iwasawa power series $ {f_\theta }(T)$ are also computed. The characters $ \chi $ (associated with quadratic extensions of the pth cyclotomic field) are chosen so as to cover as many different splitting types of $ {f_\theta }(T)$ as possible. The $ \lambda $-invariant of this power series, equal to its number of zeros, assumes values up to 8.

The article is a report on these computations and their results, including the required theoretical background. Much effort is devoted to a study of the accuracy of the computed approximations.


References [Enhancements On Off] (What's this?)

  • [1] Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York and London, 1966. MR 0195803 (33:4001)
  • [2] N. Childress and R. Gold, Zeros of p-adic L-functions, Acta Arith. 48 (1987), 63-71. MR 893462 (88i:11091)
  • [3] R. Ernvall and T. Metsänkylä, A method for computing the Iwasawa $ \lambda $-invariant, Math. Comp. 49 (1987), 281-294. MR 890270 (88i:11080)
  • [4] B. Ferrero and R. Greenberg, On the behaviour of p-adic L-functions at $ s = 0$, Invent. Math. 50 (1978), 91-102. MR 516606 (80f:12016)
  • [5] H. Hasse, Zahlentheorie, 2. Aufl., Akademie-Verlag, Berlin, 1963. MR 0153659 (27:3621)
  • [6] E. L. Ince, Cycles of reduced ideals in quadratic fields, Math. Tables IV, British Assoc. Advancement Sci., London, 1934.
  • [7] K. Iwasawa and C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86-96. MR 0202700 (34:2560)
  • [8] S. Kobayashi, Calcul approché de la série d'Iwasawa pour les corps quadratiques $ (p = 3)$, Théorie des Nombres, 1981-82 and 1982-83, Exp. No. 4, 68 pp., Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1983.
  • [9] T. Kubota and H. W. Leopoldt, Eine p-adische Theorie der Zetawerte, I: Einführung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339. MR 0163900 (29:1199)
  • [10] K. Lamprecht and H. G. Zimmer, p-adic algorithms and the computation of zeros of p-adic L-functions, EUROCAL '85, vol. 2 (Linz 1985), Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin and New York, 1985, pp. 491-502. MR 826581 (87e:11138)
  • [11] R. F. Sunseri, Zeros of p-adic L-functions and densities relating to Bernoulli numbers, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1980.
  • [12] S. S. Wagstaff, Jr., Zeros of p-adic L-functions, Math. Comp. 29 (1975), 1138-1143. MR 0387253 (52:8096)
  • [13] -, Zeros of p-adic L-functions, II, Number Theory Related to Fermat's Last Theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 297-308. MR 685305 (84h:12027)
  • [14] L. C. Washington, Introduction to cyclotomic fields, Springer, Berlin and New York, 1982. MR 718674 (85g:11001)
  • [15] -, Zeroes of p-adic L-functions, Séminaire de Théorie des Nombres, Paris 1980-81 (Paris, 1980/81), Progr. Math., vol. 22, Birkhäuser, Boston, Mass., 1982, pp. 337-357. MR 693329 (84f:12008)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R23, 11R42, 11Y70

Retrieve articles in all journals with MSC: 11R23, 11R42, 11Y70


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1122068-3
Keywords: p-adic L-functions, computation of zeros, factorization of polynomials, Newton's tangent method, Abelian fields, Iwasawa theory
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society