On the computational complexity of modular symbols

Author:
Dorian Goldfeld

Journal:
Math. Comp. **58** (1992), 807-814

MSC:
Primary 11F67; Secondary 11Y35

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122069-5

MathSciNet review:
1122069

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Efficient algorithms are obtained for integrating holomorphic differential one-forms along simple geodesic lines on those compact Riemann surfaces which are given as quotients of the upper half-plane by a congruence subgroup of . We may assume that every geodesic line passes through a cusp which is unique up to -equivalence. The algorithms we construct run in polynomial time in the height of this cusp.

**[1]**A. O. L. Atkin and J. Lehner,*Hecke operators on*, Math. Ann.**185**(1970), 134-160. MR**0268123 (42:3022)****[2]**J. E. Cremona,*Computation of modular elliptic curves and the Birch-Swinnerton Dyer conjecture*, preprint.**[3]**D. Goldfeld,*Modular elliptic curves and diophantine problems*, Proc. First Canadian Number Theory Assoc. (Banff, Canada 1988), de Gruyter, New York, 1989. MR**1106659 (92e:11061)****[4]**P. T. Lockhart,*Diophantine equations and the arithmetic of hyperelliptic curves*, Ph.D. Thesis, Columbia University, 1990.**[5]**Ju. I. Manin,*Parabolic points and zeta-functions of modular curves*, Math. USSR Izvestija**6**(1972), 19-64. MR**0314846 (47:3396)****[6]**G. Shimura,*Introduction to the arithmetic theory of automorphic functions*, Princeton Univ. Press, 1971. MR**0314766 (47:3318)****[7]**G. Shimura,*On the factors of the Jacobian variety of a modular function field*, J. Math. Soc. Japan**25**(1973), 523-544. MR**0318162 (47:6709)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11F67,
11Y35

Retrieve articles in all journals with MSC: 11F67, 11Y35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122069-5

Article copyright:
© Copyright 1992
American Mathematical Society