Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A posteriori error bounds for piecewise linear approximate solutions of elliptic equations of monotone type


Author: Koichi Niijima
Journal: Math. Comp. 58 (1992), 549-560
MSC: Primary 65N30; Secondary 65N15
DOI: https://doi.org/10.1090/S0025-5718-1992-1122073-7
MathSciNet review: 1122073
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a method for computing a posteriori error bounds for piecewise linear approximate solutions of elliptic equations of monotone type. The method is based on a relation between a line integral on an edge of a triangle and volume integrals in the triangle.


References [Enhancements On Off] (What's this?)

  • [1] I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597-1615.
  • [2] -, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754. MR 0483395 (58:3400)
  • [3] -, Analysis of optimal finite-element meshes in $ {R^1}$, Math. Comp. 33 (1979), 435-463. MR 521270 (80b:65134)
  • [4] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 283-301. MR 777265 (86g:65207)
  • [5] S. Fučík and A. Kufner, Nonlinear differential equations, Elsevier, Amsterdam, 1980.
  • [6] K. Rektorys, Variational methods in mathematics, science and engineering, Reidel, Holland, 1980. MR 596582 (83e:49001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N15

Retrieve articles in all journals with MSC: 65N30, 65N15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1122073-7
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society