The discontinuous Galerkin method with diffusion

Author:
Gerard R. Richter

Journal:
Math. Comp. **58** (1992), 631-643

MSC:
Primary 65M60; Secondary 65M15, 65N30, 76M25, 76Rxx

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122076-2

MathSciNet review:
1122076

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a way of extending the discontinuous Galerkin method from pure hyperbolic equations to convection-dominated equations with an diffusion term. The resulting method is explicit and can be applied with polynomials of degree . The extended method satisfies the same error estimate previously established for the discontinuous Galerkin method as applied to hyperbolic problems. Numerical results are provided.

**[1]**R. S. Falk and G. R. Richter,*Analysis of a continuous finite element method for hyperbolic equations*, SIAM J. Numer. Anal.**24**(1987), 257-278. MR**881364 (88d:65133)****[2]**T. J. R. Hughes and A. Brooks,*A multidimensional upwind scheme with no crosswind diffusion*, Finite Element Methods for Convection Dominated Flows (T. J. R. Hughes, ed.), AMD (ASME)**34**(1979). MR**571681 (81f:76040)****[3]**C. Johnson, U. Nävert, and J. Pitkäranta,*Finite element methods for linear hyperbolic problems*, Comput. Methods Appl. Mech. Engrg.**45**(1984), 285-312. MR**759811 (86a:65103)****[4]**C. Johnson and J. Pitkäranta,*An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation*, Math. Comp.**46**(1986), 1-26. MR**815828 (88b:65109)****[5]**P. Lesaint and P. A. Raviart,*On a finite element method for solving the neutron transport equation*, Mathematical Aspects of Finite Elements in Partial Differential Equations, (C. deBoor, ed.), Academic Press, 1974, pp. 89-123. MR**0658142 (58:31918)****[6]**T. E. Peterson,*A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation*, preprint. MR**1083327 (91m:65250)****[7]**W. H. Reed and T. R. Hill,*Triangular mesh methods for the neutron transport equation*, Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.**[8]**G. R. Richter,*An optimal-order error estimate for the discontinuous Galerkin method*, Math. Comp.**50**(1988), 75-88. MR**917819 (88j:65197)****[9]**-,*A finite element method for time-dependent convection-diffusion equations*, Math. Comp.**54**(1990), 81-106. MR**993932 (90g:65152)****[10]**-,*An explicit finite element method for convection-dominated steady state convection-diffusion equations*, SIAM J. Numer. Anal.**28**(1991), 744-759. MR**1098416 (92e:65155)****[11]**M. I. Vishik and L. A. Lyusternik,*Regular degeneration and boundary layer for linear differential equations with a small parameter*, Uspekhi Mat. Nauk**12**(1957), 3-122; English transl, in Amer. Math. Soc. Transl. (2)**20**(1962), 239-364. MR**0136861 (25:322)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M60,
65M15,
65N30,
76M25,
76Rxx

Retrieve articles in all journals with MSC: 65M60, 65M15, 65N30, 76M25, 76Rxx

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122076-2

Keywords:
Finite element,
hyperbolic

Article copyright:
© Copyright 1992
American Mathematical Society