Higher-dimensional nonnested multigrid methods

Authors:
L. Ridgway Scott and Shangyou Zhang

Journal:
Math. Comp. **58** (1992), 457-466

MSC:
Primary 65N55; Secondary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122077-4

MathSciNet review:
1122077

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonnested multigrid methods are shown to be optimal-order solvers for systems of finite element equations arising from elliptic boundary problems in any space dimension. Results are derived for Lagrange-type elements of arbitrary degree.

**[1]**R. A. Adams*Sobolev spaces*, Academic Press, New York, 1975. MR**0450957 (56:9247)****[2]**R. Bank and T. Dupont,*An optimal order process for solving finite element equations*, Math. Comp.**36**(1981), pp. 35-51. MR**595040 (82b:65113)****[3]**J. H. Bramble, J. E. Pasciak, and J. Xu,*The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms*, Math. Comp.**56**(1991), 1-34. MR**1052086 (91h:65159)****[4]**S. C. Brenner,*An optimal-order multigrid method for**nonconforming finite elements*, Math. Comp.**52**(1989), pp. 1-15. MR**946598 (89f:65119)****[5]**P. G. Ciarlet,*The finite element method for elliptic problems*, North-Holland, Amsterdam, New York, Oxford, 1978. MR**0520174 (58:25001)****[6]**M. Dauge,*Elliptic boundary value problems on corner domains*, Lecture Notes in Math., vol. 1341, Springer, Berlin and New York, 1988. MR**961439 (91a:35078)****[7]**P. Grisvard,*Elliptic problems in nonsmooth domains*, Pitman, New York and London, 1985. MR**775683 (86m:35044)****[8]**W. Hackbusch,*Multigrid methods and applications*, Springer, Berlin and New York, 1985. MR**814495 (87e:65082)****[9]**S. F. McCormick, ed.,*Multigrid Methods*, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1987. MR**972752 (89m:65004)****[10]**L. R. Scott and S. Zhang,*Finite element interpolation of nonsmooth functions satisfying boundary conditions*, Math. Comp.**54**(1990), 483-493. MR**1011446 (90j:65021)****[11]**L. R. Scott and S. Zhang,*A nonnested multigrid method for three dimensional boundary value problems*:*An introduction to the NMGTM code*, in preparation.**[12]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, NJ, 1970. MR**0290095 (44:7280)****[13]**R. Verfürth,*A multilevel algorithm for mixed problems*, SIAM J. Numer. Anal.**21**(1984), pp. 264-271. MR**736330 (85f:65112)****[14]**J. Wloka,*Partial differential equations*, Cambridge Univ. Press, London and New York, 1987. MR**895589 (88d:35004)****[15]**S. Zhang,*Multi-level iterative techniques*, Ph.D. thesis, Pennsylvania State University, 1988.**[16]**-,*Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes*, (submitted), also in [15].**[17]**-,*Optimal-order nonnested multigrid methods for solving finite element equations*I:*On quasiuniform meshes*, Math. Comp.**55**(1990), 23-36. MR**1023054 (91g:65268)****[18]**-,*Optimal-order nonnested multigrid methods for solving finite element equations*II:*On non-quasi-uniform meshes*, Math. Comp.**55**(1990), 439-450. MR**1035947 (91g:65269)****[19]**-,*Optimal-order nonnested multigrid methods for solving finite element equations*III:*On degenerate meshes*, (submitted).

Retrieve articles in *Mathematics of Computation*
with MSC:
65N55,
65N30

Retrieve articles in all journals with MSC: 65N55, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1122077-4

Article copyright:
© Copyright 1992
American Mathematical Society