Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Improved convergence rates for intermediate problems


Authors: Christopher Beattie and W. M. Greenlee
Journal: Math. Comp. 59 (1992), 77-95
MSC: Primary 49R15; Secondary 47A75, 65N12, 65N25
MathSciNet review: 1122056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Improved convergence rate estimates are derived for a variant of Aronszajn-type intermediate problems that is both computationally feasible and convergent for problems with nontrivial essential spectra. In a previous paper the authors obtained rate of convergence estimates for this method in terms of containment gaps between subspaces. In the present work, techniques for estimating relatively unbounded perturbations are refined in order to apply the Kato-Temple inequalities. This yields convergence rates for the intermediate operator eigenvalues in terms of squares of containment gaps between subspaces. Convergence rate estimates are also obtained for the intermediate problem eigenvectors, and comparisons are made with previously known results for the method of special choice.


References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, Approximation methods for eigenvalues of completely continuous symmetric operators, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 179–202. MR 0044736
  • [2] N. Aronszajn and A. Weinstein, Sur la convergence d'un procédé variationnel d'approximation dans la théorie des plaques encastrées, C. R. Acad. Sci. Paris 204 (1937), 96-98.
  • [3] Nathan Aronszajn and Alexander Weinstein, On the unified theory of eigenvalues of plates and membranes, Amer. J. Math. 64 (1942), 623–645. MR 0007196
  • [4] Norman W. Bazley, Lower bounds for eigenvalues, J. Math. Mech. 10 (1961), 289–307. MR 0128612
  • [5] Norman W. Bazley and David W. Fox, Truncations in the method of intermediate problems for lower bounds to eigenvalues, J. Res. Nat. Bur. Standards Sect. B 65B (1961), 105–111. MR 0142897
  • [6] Norman W. Bazley and David W. Fox, Error bounds for eigenvectors of self-adjoint operators, J. Res. Nat. Bur. Standards Sect. B 66B (1962), 1–4. MR 0139265
  • [7] -, Methods for lower bounds to frequencies of continuous elastic systems, Z. Angew. Math. Phys. 17 (1966), 1-37.
  • [8] Norman W. Bazley and David W. Fox, Comparison operators for lower bounds to eigenvalues, J. Reine Angew. Math. 223 (1966), 142–149. MR 0203925
  • [9] C. Beattie, Some convergence results for intermediate problems with essential spectra, M.S.E. Research Center preprint series #65, Johns Hopkins University Applied Physics Laboratory, Laurel 1982.
  • [10] Christopher A. Beattie and W. M. Greenlee, Convergence theorems for intermediate problems, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), no. 1-2, 107–122. MR 801848, 10.1017/S0308210500013676
  • [11] Christopher Beattie and W. M. Greenlee, Convergence rates for intermediate problems, Manuscripta Math. 59 (1987), no. 2, 209–227. MR 905198, 10.1007/BF01158047
  • [12] Garrett Birkhoff and George Fix, Accurate eigenvalue computations for elliptic problems, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 111–151. MR 0260199
  • [13] Robert D. Brown, Variational approximation methods for eigenvalues. Convergence theorems, Computational mathematics (Warsaw, 1980) Banach Center Publ., vol. 13, PWN, Warsaw, 1984, pp. 543–558. MR 798120
  • [14] -, Convergence criterion for Aronszajn's method and for the Bazley-Fox method, Proc. Roy. Soc. Edinburgh Sect. A, 108A (1988), 91-108.
  • [15] George Fix, Orders of convergence of the Rayleigh-Ritz and Weinstein-Bazley methods, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 1219–1223. MR 0242361
  • [16] David W. Fox and James T. Stadter, An eigenvalue estimation method of Weinberger and Weinstein’s intermediate problems, SIAM J. Math. Anal. 8 (1977), no. 3, 491–503. MR 0435998
  • [17] W. M. Greenlee, Rate of convergence in singular perturbations, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 2, 135–191, vi (1969) (English, with French summary). MR 0241795
  • [18] W. M. Greenlee, Approximation of eigenvalues by variational methods, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, vol. 10, Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht, 1979. Lectures delivered at the Mathematical Institute, Rijksuniversiteit Utrecht, Utrecht, January–March, 1978. MR 554369
  • [19] W. M. Greenlee, A convergent variational method of eigenvalue approximation, Arch. Rational Mech. Anal. 81 (1983), no. 3, 279–287. MR 683356, 10.1007/BF00250803
  • [20] P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 0213864
  • [21] L. Hörmander, Linear partial differential operators, Springer, Berlin-Heidelberg-New York, 1969.
  • [22] Tosio Kato, Quadratic forms in Hilbert spaces and asymptotic perturbation series, Department of Mathematics, University of California, Berkeley, Calif., 1955. MR 0073958
  • [23] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • [24] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10 (1973), 241–256. Collection of articles dedicated to the memory of George E. Forsythe. MR 0345399
  • [25] L. T. Poznyak, Estimation of the rate of convergence of a variant of the method of intermediate problems, Zh. Vychisl. Mat. i Mat. Fiz. 8 (1968), 1117-1126; English transl., USSR Comput. Math. and Math. Phys. 8 (1968), 246-260.
  • [26] L. T. Poznjak, The convergence of the Bazley-Fox process, and an estimate of the rate of this convergence, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 860–872 (Russian). MR 0258269
  • [27] Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • [28] -, Methods of modern mathematical physics, Vol. 2, Academic Press, New York, 1975.
  • [29] H. F. Weinberger, Error estimation in the Weinstein method for eigenvalues, Proc. Amer. Math. Soc. 3 (1952), 643–646. MR 0050177, 10.1090/S0002-9939-1952-0050177-5
  • [30] -, A theory of lower bounds for eigenvalues, Tech. Note BN-103, Inst. for Fluid Dyn. and Appl. Math., Univ. of Maryland, College Park, 1959.
  • [31] H. F. Weinberger, Error bounds in the Rayleigh-Ritz approximation of eigenvectors, J. Res. Nat. Bur. Standards Sect. B 64B (1960), 217–225. MR 0129121
  • [32] -, Variational methods for eigenvalue approximation, SIAM, Philadelphia, PA, 1974.
  • [33] Alexander Weinstein and William Stenger, Methods of intermediate problems for eigenvalues, Academic Press, New York-London, 1972. Theory and ramifications; Mathematics in Science and Engineering, Vol. 89. MR 0477971

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 49R15, 47A75, 65N12, 65N25

Retrieve articles in all journals with MSC: 49R15, 47A75, 65N12, 65N25


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1992-1122056-7
Article copyright: © Copyright 1992 American Mathematical Society