Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The effect of numerical quadrature in the $ p$-version of the finite element method


Authors: Uday Banerjee and Manil Suri
Journal: Math. Comp. 59 (1992), 1-20
MSC: Primary 65D30; Secondary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1992-1134712-5
MathSciNet review: 1134712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the use of numerical quadrature in the p-version of the finite element method. We describe a set of minimal conditions that the quadrature rules should satisfy, for various types of elements. Under sufficient assumptions of smoothness, we establish optimality of the asymptotic rate of convergence. Some computational results are presented, which illustrate under what conditions overintegration may be useful.


References [Enhancements On Off] (What's this?)

  • [1] I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), 750-776. MR 899702 (88k:65102)
  • [2] I. Babuška, B. Guo, and M. Suri, Implementation of nonhomogeneous Dirichlet boundary conditions in the p-version of the finite element method, Impact Comput. Sci. Engrg. 1 (1989), 36-63.
  • [3] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), 67-86. MR 637287 (82m:41003)
  • [4] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [5] P. G. Ciarlet and P.-A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972, pp. 409-474. MR 0421108 (54:9113)
  • [6] P. J. Davis and P. Rabinowitz, Methods of numerical integration, 2nd ed., Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [7] M. R. Dorr, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal. 21 (1984), 1181-1207. MR 765514 (86b:65121)
  • [8] D. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Internat. J. Numer. Methods Engrg. 21 (1985), 1129-1148. MR 794241 (86h:65029)
  • [9] -, Economical symmetrical quadrature rules for complete polynomials over a square domain, Internat. J. Numer. Methods Engrg. 21 (1985), 1777-1784. MR 809279 (87a:65052)
  • [10] V. A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conic or corner points, Trudy Moskov. Mat. Obshch. 16 (1967), 209-292; English transl., Trans. Moscow Math. Soc. 16 (1967), 227-313. MR 0226187 (37:1777)
  • [11] W. Gui and I. Babuška, The h , p and $ h - p$ versions of the finite element method in one dimension. Part I. The error analysis of the p-version, Numer. Math. 49 (1986), 577-612. MR 861522 (88b:65130a)
  • [12] J. N. Lyness, QUG2-integration over a triangle, Technical Memo #13, Math. and Comp. Sci. Div., Argonne National Lab., 1983.
  • [13] Y. Maday and E. M. Ronquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Comput. Methods Appl. Mech. Engrg. 80 (1990), 91-115. MR 1067944 (91g:65281)
  • [14] H.-S. Oh and I. Babuška, The p-version of the finite element method for the elliptic boundary value problems with interfaces, Comput. Methods Appl. Mech. Engrg. (1992) (in press).
  • [15] M. Suri, The p-version of the finite element method for elliptic equations of order 2l, RAIRO Modél. Math. Anal. Numér. 24 (1990), 265-304. MR 1052150 (91i:65184)
  • [16] L. B. Wahlbin, Maximum norm estimates in the finite element methods with isoparametric quadratic elements and numerical integration, RAIRO Anal. Numér. 12 (1978), 173-202. MR 0502070 (58:19236)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30, 65N30

Retrieve articles in all journals with MSC: 65D30, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134712-5
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society