Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Generalized Euler constants for arithmetical progressions


Author: Karl Dilcher
Journal: Math. Comp. 59 (1992), 259-282, S21
MSC: Primary 11Y60; Secondary 11M20, 65B10, 65B15
MathSciNet review: 1134726
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The work of Lehmer and Briggs on Euler constants in arithmetical progressions is extended to the generalized Euler constants that arise in the Laurent expansion of $ \zeta (s)$ about $ s = 1$. The results are applied to the summation of several classes of slowly converging series. A table of the constants is provided.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
  • [2] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR 0434929
  • [3] Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125
  • [4] Jan Bohman and Carl-Erik Fröberg, The Stieltjes function—definition and properties, Math. Comp. 51 (1988), no. 183, 281–289. MR 942155, 10.1090/S0025-5718-1988-0942155-9
  • [5] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803
  • [6] W. E. Briggs, The irrationality of 𝛾 or of sets of similar constants, Norske Vid. Selsk. Forh. (Trondheim) 34 (1961), 25–28. MR 0139579
  • [7] Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128
  • [8] Christopher Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 171–191. MR 749681, 10.1515/crll.1984.351.171
  • [9] K. Dilcher, On a generalized gamma function related to the Laurent coefficients of the Riemann zeta function (in preparation).
  • [10] E. R. Hansen, A table of series and products, Prentice-Hall, Englewood Cliffs, NJ, 1975.
  • [11] M. I. Israilov, The Laurent expansion of the Riemann zeta function, Trudy Mat. Inst. Steklov. 158 (1981), 98–104, 229 (Russian). Analytic number theory, mathematical analysis and their applications. MR 662837
  • [12] E. Jacobsthal, Über die Eulersche Konstante, K. Norske Vid. Selsk. Skrifter (Trondheim), 1967.
  • [13] J. C. Kluyver, On a certain series of Mr. Hardy, Quart. J. Pure Appl. Math. 50 (1927), 185-192.
  • [14] J. Knopfmacher, Generalised Euler constants, Proc. Edinburgh Math. Soc. (2) 21 (1978/79), no. 1, 25–32. MR 0472742
  • [15] D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), 125–142. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR 0369233
  • [16] J. J. Y. Liang and John Todd, The Stieltjes constants, J. Res. Nat. Bur. Standards Sect. B 76B (1972), 161–178. MR 0326974
  • [17] Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function, Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984), World Sci. Publishing, Singapore, 1985, pp. 279–295. MR 827790
  • [18] Yasushi Matsuoka, On the power series coefficients of the Riemann zeta function, Tokyo J. Math. 12 (1989), no. 1, 49–58. MR 1001731, 10.3836/tjm/1270133547
  • [19] È. P. Stankus, A remark on the coefficients of Laurent series of the Riemann zeta function, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 121 (1983), 103–107 (Russian). Studies in number theory, 8. MR 711377

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y60, 11M20, 65B10, 65B15

Retrieve articles in all journals with MSC: 11Y60, 11M20, 65B10, 65B15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134726-5
Article copyright: © Copyright 1992 American Mathematical Society