Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A method of tabulating the number-theoretic function $ g(k)$


Authors: Renate Scheidler and Hugh C. Williams
Journal: Math. Comp. 59 (1992), 251-257
MSC: Primary 11Y70; Secondary 11N36
DOI: https://doi.org/10.1090/S0025-5718-1992-1134737-X
MathSciNet review: 1134737
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ g(k)$ be the least integer $ > k + 1$ such that all prime factors of $ \left( {\begin{array}{*{20}{c}} {g(k)} \\ k \\ \end{array} } \right)$ are greater than k. The function $ g(k)$ appears to show quite irregular behavior and is hard to compute. This paper describes a method of computing $ g(k)$, using sieving techniques, and provides a table of values of $ g(k)$ for $ k \leq 140$.


References [Enhancements On Off] (What's this?)

  • [1] L. E. Dickson, History of the theory of numbers, vol. 1, Chelsea, New York, 1966.
  • [2] E. F. Ecklund, Jr., P. Erdős, and J. L. Selfridge, A new function associated with the prime factors of $ \left( {\begin{array}{*{20}{c}} n \\ k \\ \end{array} } \right)$, Math. Comp. 28 (1974), pp. 647-649.
  • [3] P. Erdős, Some problems in number theory, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London, 1971, pp. 405-414.
  • [4] P. Erdos, Uses of and limitations of computers in number theory, Computers in mathematics (Stanford, CA, 1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New York, 1990, pp. 241–260. MR 1068538
  • [5] A. J. Stephens and H. C. Williams, An open architecture number sieve, Number theory and cryptography (Sydney, 1989) London Math. Soc. Lecture Note Ser., vol. 154, Cambridge Univ. Press, Cambridge, 1990, pp. 38–75. MR 1055399

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y70, 11N36

Retrieve articles in all journals with MSC: 11Y70, 11N36


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134737-X
Article copyright: © Copyright 1992 American Mathematical Society