Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finite element approximation to initial-boundary value problems of the semiconductor device equations with magnetic influence


Author: Jiang Zhu
Journal: Math. Comp. 59 (1992), 39-62
MSC: Primary 65N30; Secondary 65N12
DOI: https://doi.org/10.1090/S0025-5718-1992-1134742-3
MathSciNet review: 1134742
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall consider Zlámal's approach to the nonstationary equations of the semiconductor device theory under magnetic fields, with mixed boundary conditions. Owing to the reduced smoothness of the electric potential $ \psi $ and carrier densities n and p caused by considering the mixed boundary conditions, we must use a nonstandard analysis for this procedure. Existence as well as uniqueness of the approximate solution is proved. The convergence rates obtained in this paper are slower than those previously obtained for pure Dirichlet or Neumann boundary conditions.


References [Enhancements On Off] (What's this?)

  • [1] W. Allegretto, Y. S. Mun, A. Nathan, and H. P. Baltes, Optimization of semiconductor magnetic field sensors using finite element analysis, Proc. NASECODE IV Conf., Boole Press, Dublin, 1985, pp. 129-133.
  • [2] J. Banasiak and G. F. Roach, On mixed boundary value problems of Dirichlet obliquederivative type in plane domains with piecewise differentiable boundary, J. Differential Equations 79 (1989), 111-131. MR 997612 (90g:35044)
  • [3] R. E. Bank, W. M. Fichtner, Jr., D. J. Rose, and R. K. Smith, Transient simulation of silicon devices and circuits, IEEE Trans. Computer-Aided Design 4 (1985), 436-451.
  • [4] R. E. Bank, J. W. Jerome, and D. J. Rose, Analytical and numerical aspects of semiconductor device modeling, Proc. Fifth Internat. Conf. on Computing Methods in Applied Science and Engineering (R. Glowinski and J. L. Lions, eds.), North-Holland, Amsterdam, 1982, pp. 593-597. MR 784655 (86h:78021)
  • [5] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. MR 0520174 (58:25001)
  • [6] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numer. 17 (1983), 17-34. MR 695450 (84f:76047)
  • [7] J. Douglas, Jr., I. M. Gamba, and M. C. J. Squeff, Simulation of the transient behavior of a one-dimensional semiconductor device, Mat. Apl. Comput. 5 (1986), 103-122. MR 884996 (88d:81132)
  • [8] J. Douglas, Jr. and Yirang Yuan, Finite difference methods for the transient behavior of a semiconductor device, Mat. Apl. Comput. 6 (1987), 25-38. MR 903000 (88h:65175)
  • [9] J. Douglas, Jr., Yirang Yuan, and Gang Li, A modified method of characteristic procedure for the transient behavior of a semiconductor device (preprint).
  • [10] -, A mixed method for the transient behavior of a semiconductor device (preprint).
  • [11] R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), 1125-1150. MR 512687 (80b:65136)
  • [12] R. E. Ewing and M. F. Wheeler, Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case, Lectures on the Numerical Solution of Partial Differential Equations, University of Maryland, 1981, pp. 151-174.
  • [13] H. Gajewski, On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech. 65 (1985), 101-108. MR 841263 (87k:35216)
  • [14] H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl. 113 (1986), 12-35. MR 826656 (87i:82111)
  • [15] I. M. Gamba and M. C. J. Squeff, Simulation of the transient behavior of a one-dimensional semiconductor device. II, SIAM J. Numer. Anal. 26 (1989), 539-552. MR 997655 (90d:65219)
  • [16] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Ser. Comput. Math., vol. 5, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. MR 851383 (88b:65129)
  • [17] J. W. Jerome, Consistency of semiconductor modeling: An existence/tability analysis for the stationary Van Roosbroeck system, SIAM J. Appl. Math. 45 (1985), 565-590. MR 796097 (87j:82014)
  • [18] -, Evolution systems in semiconductor modeling: A cyclic uncoupled analysis for the Gummel map (to appear).
  • [19] P. A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations, SIAM J. Appl. Math. 44 (1984), 896-928. MR 759704 (86e:78024)
  • [20] -, The stationary semiconductor device equations, Springer-Verlag, Wien-New York, 1985.
  • [21] P. A. Markowich and C. Ringhofer, A singularly perturbed boundary value problem modelling a semiconductor device, SIAM J. Appl. Math. 44 (1984), 231-256. MR 739302 (85k:34031)
  • [22] P. A. Markowich and M. A. Zlámal, Inverse-average-type finite element discretizations of selfadjoint second-order elliptic problems, Math. Comp. 51 (1988), 431-449. MR 930223 (89a:65171)
  • [23] M. S. Mock, On equations describing steady-state carrier distributions in a semiconductor device, Comm. Pure Appl. Math. 25 (1972), 781-792. MR 0323233 (48:1591)
  • [24] -, An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5 (1974), 597-612. MR 0417573 (54:5623)
  • [25] -, Analysis of mathematical models of semiconductor devices, Boole Press, Dublin, 1983. MR 697094 (84m:78002)
  • [26] C. Ringhofer and C. Schmeiser, An approximate Newton method for the solution of the basic semiconductor device equations, SIAM J. Numer. Anal. 26 (1989), 507-516. MR 997653 (90d:65220)
  • [27] S. Selberherr and C. Ringhofer, Discretization methods for the semiconductor equations, Proc. NASECODE III Conf., Boole Press, Dublin, 1983, pp. 31-45.
  • [28] E. Stephan and J. R. Whiteman, Singularities of the Laplacian at corners and edges of three-dimensional domains and their treatment with finite element methods, Math. Methods Appl. Sci. 10 (1988), 339-350. MR 949661 (89e:65124)
  • [29] V. Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Math., vol. 1054, Springer-Verlag, 1984. MR 744045 (86k:65006)
  • [30] Yuanming Wang, Mathematical model and its analysis for the carrier transport in semiconductor devices, Appl. Math. J. Chinese Univ. 2 (1987), 228-240.
  • [31] Jiang Zhu, The finite element methods for nonlinear Sobolev equation, Northeast. Math. J. 5 (1989), 179-196. MR 1034130 (91c:65062)
  • [32] Jiang Zhu, Finite difference methods for the semiconductor device equations with magnetic influence (to appear).
  • [33] M. A. Zlámal, Finite element solution of the fundamental equations of semiconductor devices. I, Math. Comp. 46 (1986), 27-43. MR 815829 (87d:65139)
  • [34] -, Finite element solution of the fundamental equations of semiconductor devices. II (to appear).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N12

Retrieve articles in all journals with MSC: 65N30, 65N12


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134742-3
Keywords: Finite element approximation, semiconductor device equation, magnetic field
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society