Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Doubly cuspidal cohomology for principal congruence subgroups of $ {\rm GL}(3,{\bf Z})$


Authors: Avner Ash and Mark McConnell
Journal: Math. Comp. 59 (1992), 673-688
MSC: Primary 11F75; Secondary 11F70
MathSciNet review: 1134711
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The cohomology of arithmetic groups is made up of two pieces, the cuspidal and noncuspidal parts. Within the cuspidal cohomology is a subspace-- the f-cuspidal cohomology--spanned by the classes that generate representations of the associated finite Lie group which are cuspidal in the sense of finite Lie group theory. Few concrete examples of f-cuspidal cohomology have been computed geometrically, outside the cases of rational rank 1, or where the symmetric space has a Hermitian structure.

This paper presents new computations of the f-cuspidal cohomology of principal congruence subgroups $ \Gamma (p)$ of $ {\text{GL}}(3,\mathbb{Z})$ of prime level p. We show that the f-cuspidal cohomology of $ \Gamma (p)$ vanishes for all $ p \leqslant 19$ with $ p \ne 11$, but that it is nonzero for $ p = 11$. We give a precise description of the f-cuspidal cohomology for $ \Gamma (11)$ in terms of the f-cuspidal representations of the finite Lie group $ {\text{GL}}(3,\mathbb{Z}/11)$.

We obtained the result, ultimately, by proving that a certain large complex matrix M is rank-deficient. Computation with the SVD algorithm gave strong evidence that M was rank-deficient; but to prove it, we mixed ideas from numerical analysis with exact computation in algebraic number fields and finite fields.


References [Enhancements On Off] (What's this?)

  • [1] Avner Ash, Cohomology of congruence subgroups 𝑆𝐿(𝑛,𝑍), Math. Ann. 249 (1980), no. 1, 55–73. MR 575448, 10.1007/BF01387080
  • [2] Avner Ash, Nonminimal modular symbols for 𝐺𝐿(𝑛), Invent. Math. 91 (1988), no. 3, 483–491. MR 928493, 10.1007/BF01388782
  • [3] Avner Ash, Daniel Grayson, and Philip Green, Computations of cuspidal cohomology of congruence subgroups of 𝑆𝐿(3,𝑍), J. Number Theory 19 (1984), no. 3, 412–436. MR 769792, 10.1016/0022-314X(84)90081-7
  • [4] Avner Ash, Richard Pinch, and Richard Taylor, An ̂𝐴₄ extension of 𝑄 attached to a nonselfdual automorphic form on 𝐺𝐿(3), Math. Ann. 291 (1991), no. 4, 753–766. MR 1135542, 10.1007/BF01445238
  • [5] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
  • [6] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. MR 0387495
  • [7] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
  • [8] Laurent Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and 𝐿-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159 (French). MR 1044819
  • [9] J. H. Davenport, Y. Siret, and E. Tournier, Computer algebra, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1988. Systems and algorithms for algebraic computation; With a preface by Daniel Lazard; Translated from the French by A. Davenport and J. H. Davenport; With a foreword by Anthony C. Hearn. MR 975254
  • [10] S. I. Gel′fand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15–41. MR 0272916
  • [11] Gene H. Golub and Charles F. Van Loan, Matrix computations, Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1983. MR 733103
  • [12] Harish-Chandra, Eisenstein series over finite fields, Collected Papers (V. S. Varadarajan, ed.), vol. IV, Springer-Verlag, New York, 1984, pp. 8-20.
  • [13] Anna Helversen-Pasotto, Darstellungen von 𝐺𝐿(3,𝐹_{𝑞}) und Gaußsche Summen, Math. Ann. 260 (1982), no. 1, 1–21 (German). MR 664361, 10.1007/BF01475750
  • [14] J.-P. Labesse and J. Schwermer, On liftings and cusp cohomology of arithmetic groups, Invent. Math. 83 (1986), no. 2, 383–401. MR 818358, 10.1007/BF01388968
  • [15] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
  • [16] Ronnie Lee and Joachim Schwermer, Cohomology of arithmetic subgroups of 𝑆𝐿₃ at infinity, J. Reine Angew. Math. 330 (1982), 100–131. MR 641814, 10.1515/crll.1982.330.100
  • [17] Allan J. Silberger, An elementary construction of the representations of 𝑆𝐿(2,𝐺𝐹(𝑞)), Osaka J. Math. 6 (1969), 329–338. MR 0291316
  • [18] C. Soulé, The cohomology of $ {\text{SL}}(3,\mathbb{Z})$, Topology 17 (1978), 1-22.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11F75, 11F70

Retrieve articles in all journals with MSC: 11F75, 11F70


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1992-1134711-3
Article copyright: © Copyright 1992 American Mathematical Society