Irregular primes to one million

Authors:
J. P. Buhler, R. E. Crandall and R. W. Sompolski

Journal:
Math. Comp. **59** (1992), 717-722

MSC:
Primary 11Y35; Secondary 11B68, 11D41, 65T20

MathSciNet review:
1134717

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using "fast" algorithms for power series inversion (based on the fast Fourier transform and multisectioning of power series), we have calculated all irregular primes up to one million, including their indices of irregularity and associated irregular pairs. Using this data, we verified that Fermat's "Last Theorem" and Vandiver's conjecture are true for these primes. Two primes with index of irregularity five were already known; we find that there are nine other primes less than one million with index five and that the prime 527377 is the unique prime less than one million with index six.

**[1]**Mustapha Chellali,*Accélération de calcul de nombres de Bernoulli*, J. Number Theory**28**(1988), no. 3, 347–362 (French). MR**932380**, 10.1016/0022-314X(88)90047-9**[2]**R. E. Crandall,*The NeXT computer as physics machine*, Computers in Physics**4**(1990), 132-141.**[3]**-,*Mathematica for the Sciences*, Addison-Wesley, Reading, MA, 1991.**[4]**R. Ernvall and T. Metsänkylä,*Cyclotomic invariants for primes between 125000 and 150000*, Math. Comp.**56**(1991), no. 194, 851–858. MR**1068819**, 10.1090/S0025-5718-1991-1068819-7**[5]**Donald E. Knuth,*The art of computer programming. Vol. 2*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**633878****[6]**K. A. Ribet,*On modular representations of 𝐺𝑎𝑙(\overline{𝑄}/𝑄) arising from modular forms*, Invent. Math.**100**(1990), no. 2, 431–476. MR**1047143**, 10.1007/BF01231195**[7]**John Riordan,*Combinatorial identities*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0231725****[8]**René Schoof and Lawrence C. Washington,*Quintic polynomials and real cyclotomic fields with large class numbers*, Math. Comp.**50**(1988), no. 182, 543–556. MR**929552**, 10.1090/S0025-5718-1988-0929552-2**[9]**R. Sompolski,*The second case of Fermat's last theorem for fixed irregular prime exponents*, Ph.D. thesis, University of Illinois at Chicago, 1991.**[10]**Samuel S. Wagstaff Jr.,*The irregular primes to 125000*, Math. Comp.**32**(1978), no. 142, 583–591. MR**0491465**, 10.1090/S0025-5718-1978-0491465-4**[11]**Jonathan W. Tanner and Samuel S. Wagstaff Jr.,*New congruences for the Bernoulli numbers*, Math. Comp.**48**(1987), no. 177, 341–350. MR**866120**, 10.1090/S0025-5718-1987-0866120-4**[12]**Lawrence C. Washington,*Introduction to cyclotomic fields*, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR**718674**

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y35,
11B68,
11D41,
65T20

Retrieve articles in all journals with MSC: 11Y35, 11B68, 11D41, 65T20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1992-1134717-4

Article copyright:
© Copyright 1992
American Mathematical Society