Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Primitive polynomials over finite fields


Authors: Tom Hansen and Gary L. Mullen
Journal: Math. Comp. 59 (1992), 639-643, S47
MSC: Primary 11T06
DOI: https://doi.org/10.1090/S0025-5718-1992-1134730-7
MathSciNet review: 1134730
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we extend the range of previously published tables of primitive polynomials over finite fields. For each $ {p^n} < {10^{50}}$ with $ p \leq 97$ we provide a primitive polynomial of degree n over $ {F_p}$. Moreover, each polynomial has the minimal number of nonzero coefficients among all primitives of degree n over $ {F_p}$.


References [Enhancements On Off] (What's this?)

  • [1] J. D. Alanen and D. E. Knuth, Tables of finite fields, Sankhyā Ser. A 26 (1964), 305-328. MR 0186664 (32:4122)
  • [2] C. Batut, D. Bernardi, H. Cohen, and M. Olivier, PARI, Version 1.32, 1989, 1990.
  • [3] J. T. B. Beard, Jr. and K. I. West, Some primitive polynomials of the third kind, Math. Comp. 28 (1974), 1166-1167. MR 0366879 (51:3125)
  • [4] D. M. Bressoud, A general factorization and primality testing program, The Pennsylvania State University, 1988. MR 1016812 (91e:11150)
  • [5] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of $ {b^n} \pm 1,b = 2,3,5,6,7,10,11,12$ up to high powers, Contemp. Math., Vol. 22, Amer. Math. Soc., Providence, R. I., 1983. MR 715603 (84k:10005)
  • [6] S. D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335-344. MR 0244202 (39:5519)
  • [7] -, Primitive elements and polynomials with arbitrary trace, Discrete Math. 83 (1990), 1-7. MR 1065680 (91h:11143)
  • [8] D. H. Green and I. S. Taylor, Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. IEE 121 (1974), 935-939. MR 0434611 (55:7576)
  • [9] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl., Vol. 20, Addison-Wesley, Reading, Mass., 1983 (Now distributed by Cambridge Univ. Press). MR 1429394 (97i:11115)
  • [10] H. Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, Applicable Algebra in Eng., Comm. and Comp. 1 (1990), 43-53. MR 1325510 (96e:11159)
  • [11] H. Niederreiter, An enumeration formula for certain irreducible polynomials with an application to the construction of irreducible polynomials over the binary field, Applicable Algebra in Eng., Comm. and Comp. 1 (1990), 119-124.. MR 1325516 (95m:11136)
  • [12] W. W. Peterson and E. J. Weldon, Jr., Error-correcting codes, 2nd ed., M.I.T. Press, Cambridge Mass., 1972. MR 0347444 (49:12164)
  • [13] W. Stahnke, Primitive binary polynomials, Math. Comp. 27 (1973), 977-980. MR 0327722 (48:6064)
  • [14] E. Sugimoto, A short note on new indexing polynomials of finite fields, Inform, and Control 41 (1979), 243-246. MR 534543 (80g:94062)
  • [15] E. J. Watson, Primitive polynomials $ \pmod 2$, Math. Comp. 16 (1962), 368-369. MR 0148256 (26:5764)
  • [16] S. Wolfram, Mathematica (sun 3.68881) 1.2, 1988, 1989.
  • [17] N. Zierler and J. Brillhart, On primitive trinomials $ \pmod 2$, Inform. and Control 13 (1968), 541-554. MR 0237468 (38:5750)
  • [18] -, On primitive trinomials $ \pmod 2$, II, Inform. and Control 14 (1969), 566-569. MR 0244204 (39:5521)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11T06

Retrieve articles in all journals with MSC: 11T06


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134730-7
Keywords: Finite field, primitive polynomial
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society