-blocks and -modular characters of the Chevalley groups

Authors:
Gerhard Hiss and Josephine Shamash

Journal:
Math. Comp. **59** (1992), 645-672

MSC:
Primary 20C20; Secondary 20C33, 20C40

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134731-9

MathSciNet review:
1134731

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We first determine the distribution of the ordinary irreducible characters of the exceptional Chevalley group , *q* odd, into 2-blocks. This is done by using the method of central characters. Then all but two of the irreducible 2-modular characters are determined. The results are given in the form of decomposition matrices. The methods here involve concepts from modular representation theory and symbolic computations with the computer algebra system MAPLE. As a corollary, the smallest degree of a faithful representation of , *q* odd, over a field of characteristic 2 is obtained.

**[1]**David W. Burry,*Components of induced modules*, J. Algebra**87**(1984), no. 2, 483–492. MR**739948**, https://doi.org/10.1016/0021-8693(84)90151-0**[2]**Roger W. Carter,*Finite groups of Lie type*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR**794307****[3]**Bomshik Chang and Rimhak Ree,*The characters of 𝐺₂(𝑞)*, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome,1972), Academic Press, London, 1974, pp. 395–413. MR**0364419****[4]**Hikoe Enomoto,*The characters of the finite Chevalley group 𝐺₂(𝑞),𝑞=3^{𝑓}*, Japan. J. Math. (N.S.)**2**(1976), no. 2, 191–248. MR**0437628****[5]**K. Erdmann,*Algebras and semidihedral defect groups. I*, Proc. London Math. Soc. (3)**57**(1988), no. 1, 109–150. MR**940432**, https://doi.org/10.1112/plms/s3-57.1.109**[6]**Karin Erdmann,*Algebras and semidihedral defect groups. II*, Proc. London Math. Soc. (3)**60**(1990), no. 1, 123–165. MR**1023807**, https://doi.org/10.1112/plms/s3-60.1.123**[7]**Gerhard Hiss,*On the decomposition numbers of 𝐺₂(𝑞)*, J. Algebra**120**(1989), no. 2, 339–360. MR**989902**, https://doi.org/10.1016/0021-8693(89)90201-9**[8]**Gerhard Hiss and Josephine Shamash,*3-blocks and 3-modular characters of 𝐺₂(𝑞)*, J. Algebra**131**(1990), no. 2, 371–387. MR**1058552**, https://doi.org/10.1016/0021-8693(90)90181-M**[9]**Robert B. Howlett and Robert W. Kilmoyer,*Principal series representations of finite groups with split 𝐵𝑁 pairs*, Comm. Algebra**8**(1980), no. 6, 543–583. MR**561752**, https://doi.org/10.1080/00927878008822475**[10]**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****[11]**P. Landrock,*Finite group algebras and their modules*, London Mathematical Society Lecture Note Series, vol. 84, Cambridge University Press, Cambridge, 1983. MR**737910****[12]**Josephine Shamash,*Blocks and Brauer trees for groups of type 𝐺₂(𝑞)*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 283–295. MR**933418****[13]**Josephine Shamash,*Brauer trees for blocks of cyclic defect in the groups 𝐺₂(𝑞) for primes dividing 𝑞²±𝑞+1*, J. Algebra**123**(1989), no. 2, 378–396. MR**1000493**, https://doi.org/10.1016/0021-8693(89)90052-5**[14]**Josephine Shamash,*Blocks and Brauer trees in the groups 𝐺₂(𝑞) for primes dividing 𝑞±1*, Comm. Algebra**17**(1989), no. 8, 1901–1949. MR**1013474**, https://doi.org/10.1080/00927878908823827**[15]**-,*Blocks and Brauer trees for the groups*, Comm. Algebra**20**(1992), 1375-1387.**[16]**Donald L. White,*The 2-decomposition numbers of 𝑆𝑝(4,𝑞), 𝑞 odd*, J. Algebra**131**(1990), no. 2, 703–725. MR**1058575**, https://doi.org/10.1016/0021-8693(90)90204-2

Retrieve articles in *Mathematics of Computation*
with MSC:
20C20,
20C33,
20C40

Retrieve articles in all journals with MSC: 20C20, 20C33, 20C40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1134731-9

Article copyright:
© Copyright 1992
American Mathematical Society