Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Error estimates for a nonlinear degenerate parabolic problem


Authors: P. Lesaint and J. Pousin
Journal: Math. Comp. 59 (1992), 339-358
MSC: Primary 35K65; Secondary 65M06, 65M12, 65M15, 76M25, 76X05
MathSciNet review: 1134734
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we are dealing with a partial differential equation of parabolic type, which degenerates on one side of the domain. This equation may be viewed either as a model of particle diffusion in plasma physics, or as a simplified model of a viscous boundary layer in two dimensions. Known results for the existence and uniqueness of the weak solution are first recalled. A finite difference implicit scheme is then defined, and error bounds are derived, taking into account the low degree of smoothness of the exact solution. An iterative algorithm for the computation of the numerical solution at each time step is shown to be convergent.


References [Enhancements On Off] (What's this?)

  • [1] D. G. Arison and Ph. Benilan, Régularité des solutions de l'équation des milieux poreux dans $ {\mathbb{R}^N}$, C. R. Acad. Sci. Paris Sér. A 288 (1979), 103-107.
  • [2] D. G. Arison and L. A. Peletier, Porous medium equations, Nonlinear Analysis in Physical Sciences (J. Amman, ed.), Pitman, London, 1981.
  • [3] Ph. Benilan, Opérateurs accrétifs et semi-groupes dans les espaces $ {L^p}$, Functional Anal.-Numerical Anal. Japan France seminar (H. Fuyita, ed.), Tokyo-Kyoto, 1976, pp. 15-52.
  • [4] -, private communication.
  • [5] James G. Berryman and Charles J. Holland, Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal. 74 (1980), no. 4, 379–388. MR 588035, 10.1007/BF00249681
  • [6] Philippe G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1982 (French). MR 680778
  • [7] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [8] J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
  • [9] J. R. Drake, J. R. Greenwood, G. A. Navratil, and R. S. Post, Diffusion coefficient scaling in the Wisconsin leviated octupole, Phys. Fluids 20 (1977), 148-154.
  • [10] C. M. Elliott, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal. 7 (1987), no. 1, 61–71. MR 967835, 10.1093/imanum/7.1.61
  • [11] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [12] Miguel A. Herrero and Michel Pierre, The Cauchy problem for 𝑢_{𝑡}=Δ𝑢^{𝑚} when 0<𝑚<1, Trans. Amer. Math. Soc. 291 (1985), no. 1, 145–158. MR 797051, 10.1090/S0002-9947-1985-0797051-0
  • [13] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968.
  • [14] M.-N. Le Roux, Semi-discretization in time of a fast diffusion equation, J. Math. Anal. Appl. 137 (1989), no. 2, 354–370. MR 984965, 10.1016/0022-247X(89)90251-5
  • [15] P. Lesaint and J. Pousin, Estimations d'erreur pour un problème parabolique dégénéré, Report, Dept. of Math., Swiss Federal Inst. of Technology, 1989.
  • [16] Ricardo H. Nochetto, Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions, Calcolo 22 (1985), no. 4, 457–499 (1986). MR 859087, 10.1007/BF02575898
  • [17] Ricardo H. Nochetto and Claudio Verdi, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal. 25 (1988), no. 4, 784–814. MR 954786, 10.1137/0725046
  • [18] O. A. Oleĭnik, On the system of Prandtl equations in boundary-layer theory, Dokl. Akad. Nauk SSSR 150 (1963), 28–31 (Russian). MR 0153979
  • [19] -, Sur certaines équations paraboliques dégénérescentes dle la mécanique, Colloq. Internat. Equations aux Dérivées Partielles, CNRS, Paris, 1962.
  • [20] E. S. Sabinina, A class of nonlinear degenerating parabolic equations, Soviet Math. 43 (1962), 495-498.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 35K65, 65M06, 65M12, 65M15, 76M25, 76X05

Retrieve articles in all journals with MSC: 35K65, 65M06, 65M12, 65M15, 76M25, 76X05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1992-1134734-4
Keywords: Numerical analysis, nonlinear, parabolic equation, finite differences, error estimates
Article copyright: © Copyright 1992 American Mathematical Society