The accuracy of cell vertex finite volume methods on quadrilateral meshes

Author:
Endre Süli

Journal:
Math. Comp. **59** (1992), 359-382

MSC:
Primary 65N30; Secondary 65N15, 65N50

MathSciNet review:
1134740

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For linear first-order hyperbolic equations in two dimensions we restate the cell vertex finite volume scheme as a finite element method. On structured meshes consisting of distorted quadrilaterals, the global error is shown to be of second order in various mesh-dependent norms, provided that the quadrilaterals are close to parallelograms in the sense that the distance between the midpoints of the diagonals is of the same order as the measure of the quadrilateral. On tensor product nonuniform meshes, the cell vertex scheme coincides with the familiar box scheme. In this case, second-order accuracy is shown without any additional assumption on the regularity of the mesh, which explains the insensitivity of the cell vertex scheme to mesh stretching in the coordinate directions, observed in practice.

**[1]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[2]**Zh.-P. Oben and I. Èkland,*Prikladnoi nelineinyi analiz*, “Mir”, Moscow, 1988 (Russian). Translated from the English by B. S. Darkhovskiĭ and G. G. Magaril-Il′yaev; With a preface by V. M. Tikhomirov. MR**964688****[3]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[4]**D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt (eds.),*11th International Conference on Numerical Methods in Fluid Dynamics*, Lecture Notes in Physics, vol. 323, Springer-Verlag, Berlin, 1989. MR**1002803****[5]**A. Jameson, W. Schmidt, and E. Turkel,*Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-marching schemes*, Paper 81-1259, AIAA, New York, 1981.**[6]**P. Lesaint and P.-A. Raviart,*Finite element collocation methods for first-order systems*, Math. Comp.**33**(1979), no. 147, 891–918. MR**528046**, 10.1090/S0025-5718-1979-0528046-0**[7]**R. W. MacCormack and A. J. Paullay,*Computational efficiency achieved by time splitting of finite difference operators*, Paper 72-154, AIAA, New York, 1972.**[8]**P. W. McDonald,*The computation of transonic flow through two-dimensional gas turbine cascades*, Paper 71-GT-89, ASME, New York, 1971.**[9]**K. W. Morton and M. F. Paisley,*A finite volume scheme with shock fitting for the steady Euler equations*, J. Comp. Phys.**80**(1989), 168-203.**[10]**K. W. Morton and E. Süli,*Finite volume methods and their analysis*, IMA J. Numer. Anal.**11**(1991), no. 2, 241–260. MR**1105229**, 10.1093/imanum/11.2.241**[11]**R.-H. Ni,*A multiple grid scheme for solving the Euler equations*, AIAA J.**20**(1981), 1565-1571.**[12]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****[13]**P. L. Roe,*Sonic flux formulae*, SIAM J. Sci. Statist. Comput.**13**(1992), no. 2, 611–630. MR**1149110**, 10.1137/0913034**[14]**-,*Error estimates for cell-vertex solutions of the compressible Euler equations*, ICASE Report, No. 87-6, 1987.**[15]**Endre Süli,*The accuracy of finite volume methods on distorted partitions*, The mathematics of finite elements and applications, VII (Uxbridge, 1990), Academic Press, London, 1991, pp. 253–260. MR**1132503****[16]**Endre Süli,*Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes*, SIAM J. Numer. Anal.**28**(1991), no. 5, 1419–1430. MR**1119276**, 10.1137/0728073**[17]**Miloš Zlámal,*Superconvergence and reduced integration in the finite element method*, Math. Comp.**32**(1978), no. 143, 663–685. MR**0495027**, 10.1090/S0025-5718-1978-0495027-4

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65N15,
65N50

Retrieve articles in all journals with MSC: 65N30, 65N15, 65N50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1992-1134740-X

Keywords:
Finite volume methods,
stability,
error estimates

Article copyright:
© Copyright 1992
American Mathematical Society