On real quadratic fields of class number two

Authors:
R. A. Mollin and H. C. Williams

Journal:
Math. Comp. **59** (1992), 625-632

MSC:
Primary 11R11; Secondary 11R29

DOI:
https://doi.org/10.1090/S0025-5718-1992-1136224-1

MathSciNet review:
1136224

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is the primary purpose of the paper to determine all real quadratic fields of class number when (with one possible exception). Here, *k* is the period length of the continued fraction expansion of either , in the case or 3 , or of , in the case .

**[1]**R. A. Mollin and H. C. Williams,*On a solution of a class number two problem for a family of real quadratic fields*, Computational Number Theory (A. Pethö, M. Pohst, H. Williams, and H. Zimmer, eds.), Walter de Gruyter, Berlin, 1991, pp. 95-101. MR**1151858 (93d:11118)****[2]**-,*Computation of the class numbers of a real quadratic field*, Advances in the Theory of Computing and Comput. Math. (to appear).**[3]**R. A. Mollin and H. C. Williams,*Prime-producing quadratic polynomials and real quadratic fields of class number one*, Number Theory (J. M. DeKoninck and C. Levesque, eds.), Walter de Gruyter, Berlin, 1989, pp. 654-663. MR**1024594 (90m:11153)****[4]**-,*Class number one for real quadratic fields, continued fractions and reduced ideals*, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 481-496. MR**1123091 (92f:11143)****[5]**-,*Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type*(*with one possible exception*), Number Theory (R. A. Mollin, ed.), Walter de Gruyter, Berlin, 1990, pp. 417-425. MR**1106676 (92f:11144)****[6]**-,*On a determination of real quadratic fields of class number one and related continued fraction period length less than*25, Proc. Japan Acad. Ser. A Math. Sci.**67**(1991), 20-25. MR**1103974 (92c:11113)****[7]**A. J. Stephens and H. C. Williams,*Some computational results on a problem concerning powerful numbers*, Math. Comp.**50**(1988), 619-632. MR**929558 (89d:11091)****[8]**T. Tatuzawa,*On a theorem of Siegel*, Japan J. Math.**21**(1951), 163-178. MR**0051262 (14:452c)****[9]**H. Taya and N. Terai,*Determination of certain real quadratic fields with class number two*, Proc. Japan Acad. Ser. A Math. Sci.**67**(1991), 139-144. MR**1114957 (92h:11091)****[10]**H. C. Williams and M. C. Wunderlich,*On the parallel generation of the residues for the continued fraction factoring algorithm*, Math. Comp.**48**(1987), 405-423. MR**866124 (88i:11099)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R11,
11R29

Retrieve articles in all journals with MSC: 11R11, 11R29

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1992-1136224-1

Keywords:
Real quadratic field,
class number,
continued fraction

Article copyright:
© Copyright 1992
American Mathematical Society