Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A quadrature formula involving zeros of Bessel functions


Authors: Clément Frappier and Patrick Olivier
Journal: Math. Comp. 60 (1993), 303-316
MSC: Primary 41A55; Secondary 65D32
DOI: https://doi.org/10.1090/S0025-5718-1993-1149290-5
MathSciNet review: 1149290
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An exact quadrature formula for entire functions of exponential type is obtained. The nodes of the formula are zeros of the Bessel function of the first kind of order $ \alpha $. It generalizes and refines a known quadrature formula related to the sampling theorem. The uniqueness of the nodes is studied.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Jr., Summation formulas and band-limited signals, Tôhoku Math. J. 24 (1972), 121-125. MR 0330915 (48:9252)
  • [2] C. Frappier et Q. I. Rahman, Une formule de quadrature pour les fonctions entières de type exponentiel, Ann. Sci. Math. Québec 10 (1986), 17-26. MR 841119 (88a:65031)
  • [3] R. Gervais, Q. I. Rahman and G. Schmeisser, Representation and approximation of functions via (0, 2)-interpolation, J. Approx. Theory 50 (1987), 89-110. MR 888292 (88e:41009)
  • [4] G. H. Hardy, Notes on special systems of orthogonal functions IV: the orthogonal functions of Whittaker's cardinal series, Proc. Cambridge Philos. Soc. 37 (1941), 331-348. MR 0005145 (3:108b)
  • [5] Q. I. Rahman and G. Schmeisser, An analogue of Turán's quadrature formula, Constr. Theory of Functions, Sofia, 1988, pp. 405-412. MR 994868 (90i:41038)
  • [6] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 23, Providence, R.I., 1975.
  • [7] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1952. MR 1349110 (96i:33010)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A55, 65D32

Retrieve articles in all journals with MSC: 41A55, 65D32


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1149290-5
Keywords: Quadrature formula, nodes, entire functions, Bessel functions
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society