Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Substructure preconditioners for elliptic saddle point problems


Authors: Torgeir Rusten and Ragnar Winther
Journal: Math. Comp. 60 (1993), 23-48
MSC: Primary 65N55; Secondary 65F10, 65N30, 76S05
DOI: https://doi.org/10.1090/S0025-5718-1993-1149293-0
MathSciNet review: 1149293
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Domain decomposition preconditioners for the linear systems arising from mixed finite element discretizations of second-order elliptic boundary value problems are proposed. The preconditioners are based on subproblems with either Neumann or Dirichlet boundary conditions on the interior boundary. The preconditioned systems have the same structure as the nonpreconditioned systems. In particular, we shall derive a preconditioned system with conditioning independent of the mesh parameter h. The application of the minimum residual method to the preconditioned systems is also discussed.


References [Enhancements On Off] (What's this?)

  • [1] O. Axelsson and V. A. Barker, Finite element solution of boundary value problems. Theory and computation, Academic Press, Orlando, FL, 1984. MR 758437 (85m:65116)
  • [2] K. Aziz and A. Settari, Petroleum reservoir simulation, Appl. Sci. Publ., London, 1979.
  • [3] P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), 1097-1120. MR 865945 (88h:65188)
  • [4] J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Methods Appl. Mech. Engrg. 67 (1988), 149-159.
  • [5] J. H. Bramble and J. E. Pasciak, A preconditioned technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), 1-17. MR 917816 (89m:65097a)
  • [6] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), 103-134. MR 842125 (87m:65174)
  • [7] -, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), 361-369. MR 829613 (88a:65123)
  • [8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Numer. Anal. 8 (1974), 129-151. MR 0365287 (51:1540)
  • [9] F. Brezzi, J. Douglas, Jr., R. Duràn, and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), 237-250. MR 890035 (88f:65190)
  • [10] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), 581-604. MR 921828 (88j:65249)
  • [11] F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. MR 799685 (87g:65133)
  • [12] T. F. Chan and H. C. Elman, Fourier analysis of iterative methods for elliptic problems, SIAM Rev. 31 (1989), 20-49. MR 986481 (90h:65162)
  • [13] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Numer. Anal. 17 (1983), 17-23. MR 695450 (84f:76047)
  • [14] J. Douglas, Jr. and P. Pietra, A description of some alternating-direction iterative techniques for mixed finite element methods. Mathematical and Computational Methods in Seismic Exploration and Reservoir Modeling (W. E. Fitzgibbon, ed.), SIAM, Philadelphia, PA, 1986, pp. 37-53.
  • [15] R. E. Ewing and M. F. Wheeler, Computational aspects of mixed finite element methods, Numerical Methods for Scientific Computing (R. S. Stepleman, ed.), North-Holland, Amsterdam, 1983, pp. 163-172. MR 751617
  • [16] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Numer. Anal. 11 (1977), 341-354. MR 0464543 (57:4473)
  • [17] M. Fortin and R. Glowinski, Augmented Lagrangian methods: Applications to the numerical solution of boundary value problems, North-Holland, Amsterdam, 1983. MR 724072 (85a:49004)
  • [18] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin, 1986. MR 851383 (88b:65129)
  • [19] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, Proc. 1st Internat. Sympos. on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant, and J. Periaux, eds.), SIAM, Philadelphia, PA, 1988, pp. 144-172. MR 972516 (90a:65237)
  • [20] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. I, Springer, New York, 1972. MR 0350177 (50:2670)
  • [21] P. L. Lions, On the Schwarz alternating method, Proc. 1st Internat. Sympos. on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant, and J. Periaux, eds.), SIAM, Philadelphia, PA, 1988, pp. 1-42. MR 972510 (90a:65248)
  • [22] T. P. Mathew, Domain decomposition and iterative refinement methods for mixed finite element discretizations of elliptic problems, Ph.D. thesis, Department of Computer Science, Courant Institute of Mathematical Sciences, 1989.
  • [23] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977), 148-162. MR 0438681 (55:11589)
  • [24] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), 617-629. MR 0383715 (52:4595)
  • [25] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Mathematical Aspects of Finite Element Methods (I. Galligani and E. Magenes, eds.), Lecture Notes in Math., vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. MR 0483555 (58:3547)
  • [26] T. F. Russel and M. F. Wheeler, Finite element and finite difference methods for continuous flow in porous media, The Mathematics of Reservoir Simulation (R. E. Ewing, ed.), SIAM, Philadelphia, PA, 1983.
  • [27] T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl. 13 (1992), 887-904. MR 1168084 (93a:65043)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N55, 65F10, 65N30, 76S05

Retrieve articles in all journals with MSC: 65N55, 65F10, 65N30, 76S05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1993-1149293-0
Keywords: Second-order elliptic equations, mixed finite element methods, domain decomposition
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society