Finite volume solutions of convectiondiffusion test problems
Authors:
J. A. Mackenzie and K. W. Morton
Journal:
Math. Comp. 60 (1993), 189220
MSC:
Primary 76R99; Secondary 65L10, 65N99, 76M25, 76N99
MathSciNet review:
1153168
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The cellvertex formulation of the finite volume method has been developed and widely used to model inviscid flows in aerodynamics: more recently, one of us has proposed an extension for viscous flows. The purpose of the present paper is twofold: first we have applied this scheme to a wellknown convectiondiffusion model problem, involving flow round a 180 bend, which highlights some of the issues concerning the application of the boundary conditions in such cellbased schemes. The results are remarkably good when the boundary conditions are applied in an appropriate manner. In our efforts to explain the high quality of the results we were led to a detailed analysis of the corresponding onedimensional problem. Our second purpose is thus to gather together various approaches to the analysis of this problem and to draw attention to the supraconvergence phenomena enjoyed by the proposed methods.
 [1]
J.
W. Barrett and K.
W. Morton, Approximate symmetrization and PetrovGalerkin methods
for diffusionconvection problems, Comput. Methods Appl. Mech. Engrg.
45 (1984), no. 13, 97–122. MR 759805
(86g:65180), http://dx.doi.org/10.1016/00457825(84)90152X
 [2]
E.
P. Doolan, J.
J. H. Miller, and W.
H. A. Schilders, Uniform numerical methods for problems with
initial and boundary layers, Boole Press, Dún Laoghaire, 1980.
MR 610605
(82h:65053)
 [3]
B. GarcíaArchilla and J. A. Mackenzie, Analysis of a supraconvergent cell vertex finite volume method for onedimensional convectiondiffusion problems, Technical Report NA91/13, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1991. (Submitted for publication)
 [4]
V. A. Gushchin and V. V. Shchennikov, A monotonic difference scheme of second order accuracy, U.S.S.R. Comput. Math. and Math. Phys. 14 (1974), 252256.
 [5]
J. C. Heinrich, P. S. Huyakorn, A. R. Mitchell, and O. C. Zienkiewicz, An upwind finite element scheme for twodimensional convective transport equations, Internat. J. Numer. Methods Engrg. 11 (1977), 131143.
 [6]
T.
J. R. Hughes and A.
Brooks, A multidimensional upwind scheme with no crosswind
diffusion, Finite element methods for convection dominated flows
(Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979)
AMD, vol. 34, Amer. Soc. Mech. Engrs. (ASME), New York, 1979,
pp. 19–35. MR 571681
(81f:76040)
 [7]
A. Jameson, W. Schmidt, and E. Turkel, Numerical solutions of the Euler equations by finite volume methods using RungeKutta time stepping, AIAA Paper No. 811259, 1981.
 [8]
R.
Bruce Kellogg and Alice
Tsan, Analysis of some difference
approximations for a singular perturbation problem without turning
points, Math. Comp. 32
(1978), no. 144, 1025–1039.
MR
0483484 (58 #3485), http://dx.doi.org/10.1090/S00255718197804834849
 [9]
H.O.
Kreiss, T.
A. Manteuffel, B.
Swartz, B.
Wendroff, and A.
B. White Jr., Supraconvergent schemes on irregular
grids, Math. Comp. 47
(1986), no. 176, 537–554. MR 856701
(88b:65082), http://dx.doi.org/10.1090/S00255718198608567015
 [10]
John
E. Lavery, Nonoscillatory solution of the steadystate inviscid
Burgers’ equation by mathematical programming, J. Comput. Phys.
79 (1988), no. 2, 436–448. MR 973336
(89j:76020), http://dx.doi.org/10.1016/00219991(88)900241
 [11]
R. W. MacCormack and A. J. Paullay, Computational efficiency achieved by time splitting of finite difference operators, AIAA Paper No. 72154, 1972.
 [12]
J. A. Mackenzie, The cell vertex method for viscous transport problems, Technical Report NA89/4, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1989.
 [13]
Thomas
A. Manteuffel and Andrew
B. White Jr., The numerical solution of secondorder
boundary value problems on nonuniform meshes, Math. Comp. 47 (1986), no. 176, 511–535, S53–S55. MR 856700
(87m:65116), http://dx.doi.org/10.1090/S00255718198608567003
 [14]
P. W. McDonald, The computation of transonic flow through twodimensional gas turbine cascades, Paper 71GT89, ASME, New York, 1971.
 [15]
J. Moore and J. Moore, Calculation of horseshoe vortex flow without numerical mixing, Technical Report JM/8311, Virginia Polytechnic Inst. and State University, Blacksburg, Virginia 24061, 1983. Prepared for presentation at the 1984 Gas Turbine Conference, Amsterdam.
 [16]
K.
W. Morton, Generalised Galerkin methods for hyperbolic
problems, Comput. Methods Appl. Mech. Engrg. 52
(1985), no. 13, 847–871. FENOMECH ’84, Part III, IV
(Stuttgart, 1984). MR 822763
(87e:65061), http://dx.doi.org/10.1016/00457825(85)900179
 [17]
K.
W. Morton, Finite volume methods and their analysis, The
mathematics of finite elements and applications, VII (Uxbridge, 1990),
Academic Press, London, 1991, pp. 189–214. MR 1132499
(92i:76066)
 [18]
K. W. Morton and M. F. Paisley, A finite volume scheme with shock fitting for the steady Euler equations, J. Comput. Phys. 80 (1989), 168203.
 [19]
K.
W. Morton and B.
W. Scotney, PetrovGalerkin methods and diffusionconvection
problems in 2D, The mathematics of finite elements and applications, V
(Uxbridge, 1984), Academic Press, London, 1985, pp. 343–366. MR 811047
(87i:76049)
 [20]
K. W. Morton and E. Süli, Finite volume methods and their analysis, Technical Report NA90/14, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1989.
 [21]
R. H. Ni, A multiple grid method for solving the Euler equations, AIAA J. 20 (1982), 15651571.
 [22]
Eugene
O’Riordan and Martin
Stynes, An analysis of a superconvergence
result for a singularly perturbed boundary value problem, Math. Comp. 46 (1986), no. 173, 81–92. MR 815833
(87b:65107), http://dx.doi.org/10.1090/S00255718198608158338
 [23]
R. M. Smith and A. G. Hutton, The numerical treatment of convectiona performance/comparison of current methods, Numer. Heat Transfer 5 (1982), 439461.
 [24]
Marc
Nico Spijker, Stability and convergence of finitedifference
methods, Doctoral dissertation, University of Leiden, vol. 1968,
Rijksuniversiteit te Leiden, Leiden, 1968 (English, with Dutch summary). MR 0239761
(39 #1118)
 [25]
Friedrich
Stummel, Biconvergence, bistability and consistency of onestep
methods for the numerical solution of initial value problems in ordinary
differential equations, Topics in numerical analysis, II (Proc. Roy.
Irish Acad. Conf., Univ. College, Dublin, 1974) Academic Press, London,
1975, pp. 197–211. MR 0421084
(54 #9089)
 [1]
 J. W. Barrett and K. W. Morton, Approximate symmetrization and PetrovGalerkin methods for diffusionconvection problems, Comput. Methods Appl. Mech. Engrg. 45 (1984), 97122. MR 759805 (86g:65180)
 [2]
 E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980. MR 610605 (82h:65053)
 [3]
 B. GarcíaArchilla and J. A. Mackenzie, Analysis of a supraconvergent cell vertex finite volume method for onedimensional convectiondiffusion problems, Technical Report NA91/13, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1991. (Submitted for publication)
 [4]
 V. A. Gushchin and V. V. Shchennikov, A monotonic difference scheme of second order accuracy, U.S.S.R. Comput. Math. and Math. Phys. 14 (1974), 252256.
 [5]
 J. C. Heinrich, P. S. Huyakorn, A. R. Mitchell, and O. C. Zienkiewicz, An upwind finite element scheme for twodimensional convective transport equations, Internat. J. Numer. Methods Engrg. 11 (1977), 131143.
 [6]
 T. J. R. Hughes and A. N. Brooks, A multidimensional upwind scheme with no crosswind diffusion, Finite Element Methods for Convection Dominated Flows (T. J. R. Hughes, ed.), ASME, New York, 1985, pp. 1935. MR 571681 (81f:76040)
 [7]
 A. Jameson, W. Schmidt, and E. Turkel, Numerical solutions of the Euler equations by finite volume methods using RungeKutta time stepping, AIAA Paper No. 811259, 1981.
 [8]
 R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), 10251039. MR 0483484 (58:3485)
 [9]
 H. O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff, and A. B. White, Supraconvergent schemes on irregular grids, Math. Comp. 47 (1986), 537554. MR 856701 (88b:65082)
 [10]
 J. E. Lavery, Nonoscillatory solution of the steady inviscid Burgers' equation by mathematical programming, J. Comput. Phys. 79 (1988), 436448. MR 973336 (89j:76020)
 [11]
 R. W. MacCormack and A. J. Paullay, Computational efficiency achieved by time splitting of finite difference operators, AIAA Paper No. 72154, 1972.
 [12]
 J. A. Mackenzie, The cell vertex method for viscous transport problems, Technical Report NA89/4, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1989.
 [13]
 T. A. Manteuffel and A. B. White, Jr., The numerical solution of secondorder boundary value problems on nonuniform meshes, Math. Comp. 47 (1986), 511535. MR 856700 (87m:65116)
 [14]
 P. W. McDonald, The computation of transonic flow through twodimensional gas turbine cascades, Paper 71GT89, ASME, New York, 1971.
 [15]
 J. Moore and J. Moore, Calculation of horseshoe vortex flow without numerical mixing, Technical Report JM/8311, Virginia Polytechnic Inst. and State University, Blacksburg, Virginia 24061, 1983. Prepared for presentation at the 1984 Gas Turbine Conference, Amsterdam.
 [16]
 K. W. Morton, Generalised Galerkin methods for hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 52 (1985), 847871. Presented at FENOMECH '84, Part III, IV, Stuttgart, 1984. MR 822763 (87e:65061)
 [17]
 , Finite volume methods and their analysis, The Mathematics of Finite Elements and Applications, VII MAFELAP 1990 (J. R. Whiteman, ed.), Academic Press, London and New York, 1991, pp. 189214. MR 1132499 (92i:76066)
 [18]
 K. W. Morton and M. F. Paisley, A finite volume scheme with shock fitting for the steady Euler equations, J. Comput. Phys. 80 (1989), 168203.
 [19]
 K. W. Morton and B. W. Scotney, PetrovGalerkin methods and diffusionconvection problems in 2D, The Mathematics of Finite Elements and Applications, V MAFELAP 1984 (J. R. Whiteman, ed.), Academic Press, London and New York, 1985, pp. 343366. MR 811047 (87i:76049)
 [20]
 K. W. Morton and E. Süli, Finite volume methods and their analysis, Technical Report NA90/14, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD, 1989.
 [21]
 R. H. Ni, A multiple grid method for solving the Euler equations, AIAA J. 20 (1982), 15651571.
 [22]
 E. O'Riordan and M. Stynes, An analysis of a superconvergence result for a singularly perturbed boundary value problem, Math. Comp. 46 (1986), 8192. MR 815833 (87b:65107)
 [23]
 R. M. Smith and A. G. Hutton, The numerical treatment of convectiona performance/comparison of current methods, Numer. Heat Transfer 5 (1982), 439461.
 [24]
 M. N. Spijker, Stability and convergence of finitedifference methods, PhD thesis, Leiden, Rijksuniversiteit, 1968. MR 0239761 (39:1118)
 [25]
 F. Stummel, Biconvergence, bistability and consistency of onestep methods for the numerical solution of initial value problems in ordinary differential equations, Topics in Numerical Analysis II (J. J. H. Miller, ed.), Academic Press, London, 1975, pp. 197211. MR 0421084 (54:9089)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
76R99,
65L10,
65N99,
76M25,
76N99
Retrieve articles in all journals
with MSC:
76R99,
65L10,
65N99,
76M25,
76N99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718199311531680
PII:
S 00255718(1993)11531680
Keywords:
Convectiondiffusion,
finite volume,
cellvertex
Article copyright:
© Copyright 1993
American Mathematical Society
