Total variation and error estimates for spectral viscosity approximations

Author:
Eitan Tadmor

Journal:
Math. Comp. **60** (1993), 245-256

MSC:
Primary 35L65; Secondary 65M06, 65M12, 65M15

MathSciNet review:
1153170

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the behavior of spectral viscosity approximations to non-linear scalar conservation laws. We show how the spectral viscosity method compromises between the total-variation bounded viscosity approximations-- which are restricted to first-order accuracy--and the spectrally accurate, yet unstable, Fourier method. In particular, we prove that the spectral viscosity method is -stable and hence total-variation bounded. Moreover, the spectral viscosity solutions are shown to be -stable, in agreement with Oleinik's E-entropy condition. This essentially nonoscillatory behavior of the spectral viscosity method implies convergence to the exact entropy solution, and we provide convergence rate estimates of both global and local types.

**[1]**Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang,*Spectral methods in fluid dynamics*, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR**917480****[2]**David Gottlieb and Steven A. Orszag,*Numerical analysis of spectral methods: theory and applications*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. MR**0520152****[3]**David Gottlieb and Eitan Tadmor,*Recovering pointwise values of discontinuous data within spectral accuracy*, Progress and supercomputing in computational fluid dynamics (Jerusalem, 1984), Progr. Sci. Comput., vol. 6, Birkhäuser Boston, Boston, MA, 1985, pp. 357–375. MR**935160****[4]**Heinz-Otto Kreiss,*Fourier expansions of the solutions of the Navier-Stokes equations and their exponential decay rate*, Analyse mathématique et applications, Gauthier-Villars, Montrouge, 1988, pp. 245–262. MR**956963****[5]**Heinz-Otto Kreiss and Joseph Oliger,*Comparison of accurate methods for the integration of hyperbolic equations*, Tellus**24**(1972), 199–215 (English, with Russian summary). MR**0319382****[6]**N. N. Kuznetsov,*On stable methods for solving non-linear first order partial differential equations in the class of discontinuous functions*, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 183–197. MR**0657786****[7]**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****[8]**Yvon Maday and Eitan Tadmor,*Analysis of the spectral vanishing viscosity method for periodic conservation laws*, SIAM J. Numer. Anal.**26**(1989), no. 4, 854–870. MR**1005513**, 10.1137/0726047**[9]**Haim Nessyahu and Eitan Tadmor,*The convergence rate of approximate solutions for nonlinear scalar conservation laws*, SIAM J. Numer. Anal.**29**(1992), no. 6, 1505–1519. MR**1191133**, 10.1137/0729087**[10]**Richard Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), no. 161, 91–106. MR**679435**, 10.1090/S0025-5718-1983-0679435-6**[11]**S. Schochet,*The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws*, SIAM J. Numer. Anal.**27**(1990), no. 5, 1142–1159. MR**1061123**, 10.1137/0727066**[12]**Joel Smoller,*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146****[13]**Eitan Tadmor,*Convergence of spectral methods for nonlinear conservation laws*, SIAM J. Numer. Anal.**26**(1989), no. 1, 30–44. MR**977947**, 10.1137/0726003**[14]**Eitan Tadmor,*Shock capturing by the spectral viscosity method*, Comput. Methods Appl. Mech. Engrg.**80**(1990), no. 1-3, 197–208. Spectral and high order methods for partial differential equations (Como, 1989). MR**1067951**, 10.1016/0045-7825(90)90023-F**[15]**-,*Semi-discrete approximations to nonlinear systems conservation laws*;*consistency and*-*stability imply convergence*, ICASE Report No. 88-41.**[16]**Eitan Tadmor,*Local error estimates for discontinuous solutions of nonlinear hyperbolic equations*, SIAM J. Numer. Anal.**28**(1991), no. 4, 891–906. MR**1111445**, 10.1137/0728048

Retrieve articles in *Mathematics of Computation*
with MSC:
35L65,
65M06,
65M12,
65M15

Retrieve articles in all journals with MSC: 35L65, 65M06, 65M12, 65M15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1993-1153170-9

Keywords:
Conservation laws,
spectral viscosity method,
spectral accuracy,
total variation,
Lipschitz stability,
convergence rate estimates

Article copyright:
© Copyright 1993
American Mathematical Society